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студенти з допомогою смартфону мають можливість завантажити слайди, що містять 
таблиці, рисунки, фото- та відеоматеріали з курсу, що безумовно сприяє кращому розумінню 
матеріалу з навчальної дисципліни.  Також перевагою даної розробки є те, що доступна за 
QR-посиланням електронна версія посібника може оперативно адаптовуватись під специфіку 
навчальних курсів з фізики, що містять окремі питання «Термодинаміки» чи методики її 
викладання.     

Посібник рекомендований для студентів освітнього рівня підготовки «бакалавр» та 
«магістр» фізико-математичного факультету Кам’янець-Подільського національного 
університету імені Івана Огієнка та усіх, кого цікавлять питання термодинаміки та 
статистичної фізики. 
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П Е Р Е Д М О В А 
 

Курс термодинаміки і статистичної фізики є фундаментальним розділом 

основного курсу теоретичної фізики, також є базовим для ряду спеціальних 

курсів, тому якісне засвоєння студентами матеріалу цього курсу є дуже 

важливим. Треба зазначити, що наукова література з цього розділу фізики в 

переважній більшості видана російською мовою. З цих міркувань назріла 

актуально потреба у навчальних посібниках для студентів фізичних 

спеціальностей українською мовою з усіх розділів фізики. 

У навчальному посібнику викладені основні питання термодинаміки та 

статистичної фізики, що відповідають програмі фізичних спеціальностей 

університетів та педагогічних інститутів. Термодинаміка розглядається як 

наслідок основних принципів статистичної фізики. У посібнику особлива увага 

приділена висвітленню фізичного змісту отриманих співвідношень, що поряд із 

детальними математичними викладками дає можливість читачеві самостійно 

засвоїти складний матеріал. Важливо, що представлений навчальний посібник 

підготовлений у результаті апробації електронного посібника, який автори 

протягом кількох років успішно використовували в навчальному процесі на 

фізичних спеціальностях університетів. Посібник добре структурований, 

містить теоретичний матеріал для 15 лекцій з курсу, які доповнені рисунками, 

таблицями, світлинами вчених, які зробили вагомий внесок у розвиток 

термодинаміки та статистичної фізики. 

Посібник містить великий об’єм інформації, але кожного окрему частину 

посібника можна автономного використовувати як на заняттях з теоретичної 

фізики, так і загальної фізики чи методики навчання фізики у закладах вищої 

освіти. Посібник буде незамінним на заняттях з відповідно курсу фізики і для 

самостійної роботи студентів для глибшого засвоєння матеріалу. 

Навчальний посібник «Термодинаміка і статистична фізика» безперечно 

буде корисним студентам фізичних спеціальностей, а також викладачам фізики 

закладів вищої освіти різних рівнів акредитації.  
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Вступна лекція №1 
 

Коротка історія розвитку молекулярно-кінетичної теорії. 

Феноменологічний, динамічний та статистичний методи в фізиці.  

Феноменологічна термодинаміка і статистична фізика. Статистична 
фізика як основа теорії макроскопічних процесів. 

Термодинамічні системи, параметри і рівновага.  

Температура, нульове начало термодинаміки.  

Гомогенні і гетерогенні системи. Рівноважні і нерівноважні процеси.  

Внутрішня енергія системи. Робота і теплота. Термічне і калоричне 
рівняння стану. 

Перше начало термодинаміки. Рівняння першого начала термодинаміки.  

Теплоємності і теплоти ізотермічних  змін зовнішніх параметрів. 
Загальний вираз для зв’язку між теплоємностями при сталому тиску і 
сталому об’ємі.  

Основні термодинамічні процеси (ізотермічний, адіабатний і 
політропний) та їх рівняння.  

Зв’язок між коефіцієнтами пружності і теплоємностями 
 
 

“Thermodynamics is a funny subject. The first time you go through it, you 
don't understand it at all. The second time you go through it, you think you 
understand it, except for one or two small points. The third time you go 
through it, you know you don't understand it, but by that time you are so 
used to it, it doesn't bother you any more.” 

Arnold Sommerfield 
 
 
 Коротка історія розвитку молекулярно-кінетичної теорії. 
 
Сучасна статистична фізика, яку інколи також називають статистичною 
механікою, базується на ідеях, головні з яких відомі ще з епохи античного 
світу, тобто понад дві тисячі років. Зокрема, твердження про те, що всі 
відомі макроскопічні тіла є складними системами, утвореними з надзвичайно 
великої кількості мікрочастинок, а також твердження про безупинний 
(безперервний) і невпорядкований (хаотичний) рух цих мікрочастинок 
належать давньогрецьким філософам Епікуру та Демокриту. Оригінальні 
роботи цих авторів не дійшли до нас, втім вони були пересказані римським 
поетом Титом Лукрецієм Каром (95-55 рр до Р.Х.) в його науково-
філософській поемі «Про природу речей»1. 

                                                 
1 Наведемо тут коротку цитату з поеми в перекладі з латини:  
«Ось подивися: кожного разу, як сонячне світло  
В наше житло проникає і морок промінням своїм прорізає, 
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З тих часів ревізії було піддано лише уявлення стародавніх греків про 
атом як неподільну частинку (власне, старогрецьке слово «атомос» і 
означало «неподільний»). Нині ми розуміємо, що система макротіло) може 
складатися з різного типу частинок: молекул, атомів, іонів, електронів 
тощо. Для спрощення термінології називатимемо їх надалі просто 
мікрочастинками. 

Пізніше, ця так звана атомістична гіпотеза розвивалася в роботах хіміків-
атомістів, зокрема Лавуаз’є, Авогадро, Ломоносова протягом XVIII-XIX 
століть. Саме в хімії виникло поняття кіломолю як специфічної одиниці 

кількості об’єктів великої системи: кіломоль містить в собі 261002.6 AN  
(так зване число Авогадро)об’єктів. Зокрема кіломоль будь-якого газу 
містить завжди однакову кількість молекул: AN . Великими системами, які є 
предметом вивчення статистичної фізики, надалі вважатимемо такі системи 
мікрочастинок, які складаються з кількості частинок порядку числа 
Авогадро:  

ANN ~   (1) 

Кількість кіломолів у системі визначається 
відношеннями: 


m

N

N
z

A

   (2) 

Де ANmNmm 00 ,   - так звана молярна маса, а 0m  - 
маса мікрочастинок (молекул). 

Фізичні основи молекулярно-кінетичної теорії (МКТ), 
як попередниці сучасної статистичної фізики, були 
закладені у XIX сторіччі у трудах видатних фізиків: 
Джеймса Клерка Максвела, Людвіга Больцмана, а 

пізніше, на самому початку XX століття також Джозайя Віларда Гіббса.  

Зокрема Максвелл, вивчаючи розподіл молекул ідеального газу по 
швидкостям, першим застосував статистично-імовірнісний підхід для 
вивчення великих систем мікрочастинок. Больцман розвивав цей підхід і 
зокрема отримав один з фундаментальних законів статистичної фізики: 
больцманівський закон для ентропії системи. Нарешті, Гіббс запропонував 
альтернативний підхід в статистичній фізиці так звану концепцію 
статистичних ансамблів, і завершив розробку основ сучасної статистичної 
фізики. 

 

 Феноменологічний, динамічний та статистичний методи у фізиці.  
 
Розглянемо систему частинок з точки зору класичної, або квантової 
механіки. Якщо така система складається з порівняно невеликої кількості 
частинок ( ANN  ) ми можемо вивчати рух кожної окремої частинки. 
Наприклад, користуючись законами класичної механіки та її принципом 
причинності. Цей принцип гарантує нам, якщо ми знаємо координати та 
                                                                                                                                                                  
Безліч маленьких тілець ти побачиш у пустці,  
Що в напрямках всіх сновигають, у сонячнім сяйві блимаючи. 
Ніби у вічній війні вони б’ються у битвах, 
Або наштовхуючись, або ж до різних сторін відлітаючи… 
Ще ти побачиш межи порошинок, як їх чимало свій шлях  
Перемінять від поштовхів скритих, і знов сновигають 
Всюди, туди і сюди утікаючи в напрямах різних. 
Знай же: від перших причин це загальне блукання ведеться…»     
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імпульси всіх частинок системи в деякий початковий момент часу 0t , 
розрахунок траєкторії кожної частинки на всі моменти часу від 0t  і аж 
до Страшного Суду. 

Втім, можна скористатися також законами квантової механіки, оскільки вони 
є більш адекватними для опису мікросвіту та мікрочастинок. Тоді 
відповідний принцип причинності гарантує нам знаходження вектору стану 
нашої системи на всі моменти часу 0t , якщо ми знаємо всі взаємодії 
поміж частинками в системі, а також взаємодії частинок з тілами та 
силовими полями поза межами системи, і нам відомий системний вектор стану 
(хвильова функція) в деякий початковий момент часу 0t . Щоправда, 
квантова механіка не дає стовідсоткової гарантії, як це робить класична 
механіка, щодо спостереження певної частинки у певній точці простору і у 
певний момент часу. Квантова теорія дає нам лише імовірність такої події, 
втім підкреслимо, імовірність по кожній окремій частинці системи. 

Описаний вище підхід називають динамічним методом  вивчення системи. Він 
має природні обмеження по кількості частинок в системі. Дійсно, 
припустимо, що ми здатні розрахувати траєкторію окремої частинки лише за 

один такт роботи процесора комп’ютера (це приблизно за 910 секунди). 
Навіть за таких умов, після року безперервної роботи (це приблизно 

71015.3  секунд) ми зуміли б розрахувати траєкторії лише для приблизно 

ANN  16103  частинок. До числа Авогадро, яким характеризують кількість 
частинок у реальних великих системах, не вистачає ще добрих десять 
порядків.  

Варто ще розглянути просте питання: навіщо нам така купа інформації і як 
її осмислювати? Отому динамічний метод є непридатним для вивчення дійсно 
великих систем. За таких умов фізики користуються феноменологічним, або 
статистичним методами. 

Феноменологічний метод, який застосовують в класичній термодинаміці, 
взагалі відмовляється від розгляду внутрішньої структури великої системи 
мікрочастинок. У такому методі система розглядається як безструктурна 
суцільна матерія, а природа частинок з яких вона складається, або спосіб 
їх взаємодії не розглядаються. Вивчаються лише зовнішні впливи на систему 
та її відгуки на такі впливи (феномени, явища). Система описується 
параметрами, які відносяться до неї в цілому: жодних параметрів, які 
описують мікрочастинки, не розглядають. Термодинаміка є феноменологічною 
теорією, яка спирається на декілька законів (постулатів), отриманих з 
емпіричних спостережень. Закони термодинаміки не можна вивести у межах 
самої термодинаміки. 

Втім ці закони (або постулати – твердження прийняті без доказів, але 
неочевидні, на відміну від аксіом), в межах статистичного методу можна 
обґрунтувати, довести їх, як теореми, з більш загальних законів. 
Статистичний метод дає дедуктивний метод опису великої макросистеми, 
виходячи з основних властивостей тих мікрочастинок, з яких вона 
складається, однак не слідкуючи за рухом та взаємодіями кожної окремої 
частинки, як це робиться в динамічному методі. Статистична фізика при 
цьому спирається на уявлення про атомарну (молекулярну) будову речовини 
(великої системи) у сполученні з основними положеннями теорії 
імовірності. Вона відповідає, зокрема, на питання: які закони мікросвіту 
лежать у підґрунті законів термодинаміки, як можна пояснити термодинаміку 
на підставі цих законів, чому конкретна система демонструє такі 
термодинамічні параметри. 
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 Феноменологічна термодинаміка і статистична фізика. Статистична фізика 
як основа теорії макроскопічних процесів. 

 
З викладеного вище зрозуміле співвідношення феноменологічної 
термодинаміки та статистичної фізики: остання є більш загальною теорією, 
теоретичною основою термодинаміки. Простота логічних побудов 
термодинаміки дозволяє робити надзвичайно важливі фізичні висновки з 
невеликої кількості основних законів. У той же час термодинаміка є 
безсилою під час вивчення атомних процесів, які відбуваються на 
мікрорівні макроскопічної великої системи. Такий розгляд під силу лише 
статистичній фізиці. 

Статистична фізика дозволяє встановити зв’язок поміж фізичними законами 
мікросвіту та макросвіту. Вона оперує з поняттями мікропараметрів та 
мікропроцесів, які відбуваються на рівні структурних елементів великої 
системи з одного боку, і макропараметрів та макростанів, які 

характеризують стан системи в цілому на макрорівні з іншого 
боку.  Статистична теорія повинна забезпечити наступні 
прості вимоги: 

 переважну частину інформації про мікрочастинки, їх рух 
та взаємодію можна ігнорувати, аби не мати справи з 
надмірною кількістю мікроскопічних параметрів; 

 разом з тим треба визначити і утримати деяку 
мінімальну частину мікроскопічної інформації відносно 
мікрочастинок, яка б дозволяла оцінку макропараметрів 

для системи як цілого; 

 часова причинність, яка керує мікропроцесами на рівні 
мікрочастинок, не повинна проявлятися явно на макрорівні всієї 
системи; 

 закони термодинаміки мусять отримати статистичне обґрунтування 

Якщо розглядати статистичну фізику як теорію мікропроцесів у великих 
системах, то викладені вище завдання є головними завданнями статистичної 
фізики як такої теорії.   

Статистична фізика обмежується розглядом властивостей макроскопічних 
великих систем частинок ( ANN ~ ), стан яких не змінюється в часі, тобто 
є стаціонарним. Стаціонарні стани, в яких система може перебувати 
необмежено довго, за додаткової умови, що всі параметри, які 
характеризують стан системи, є також  однорідними (тобто незалежними від 
координат), називають рівноважними станами.  

У статистичній фізиці властивості та закони руху мікрочастинок, з яких 
складається макросистема, вважаються наперед відомими. Тому головна 
задача статистичної фізики полягає в описі поведінки системи, яка 
складається з надзвичайно великої кількості частинок, властивості і 
закони руху яких є відомими. Такі великі макросистеми демонструють 
важливу і принципову особливість: їх поведінка у рівноважному стані 
регулюється законами, природа яких відносно слабо залежить від конкретних 
властивостей , і навіть від особливостей взаємодії, тих мікрочастинок, з 
котрих складається макросистема. Ця принципова особливість є 
відображенням відомого в математиці закону великих чисел, або 
статистичного закону. Цей закон зокрема стверджує, що у рівноважному 
стану всі великі системи демонструють приблизно однакову поведінку, яка 
слабо залежить від їх внутрішньої структури. Повне ігнорування 
внутрішньої структури системи у феноменологічному підході класичної 
термодинаміки базується саме на цьому законі.  
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Можна сказати, що статистична фізика вивчає поведінку та властивості 
рівноважних макросистем. Поведінку нерівноважних систем вивчає інша 
галузь фізики: фізична кінетика. Під нерівноважними розуміють такі 
системи, які є, або нестаціонарними, змінними в часі, або неоднорідними в 
просторі, або і те і інше разом. Зрозуміло, що такі об’єкти дослідження є 
більш складними, тому закони фізичної кінетики значно складніші від 
законів статистичної фізики. Нині відомі закони поведінки лише 
найпростіших нерівноважних систем.  

   

 Термодинамічні системи, параметри і рівновага. 
 

  
Термодинаміка вивчає великі системи, які 
складаються з великої кількості матеріальних 
частинок (наприклад молекул, атомів, іонів тощо), 
та/або силових полів (наприклад електромагнітного 
поля). У будь-якому разі термодинамічна система є 
динамічною і має надзвичайно велику кількість 
внутрішніх ступенів свободи. Системи з малою 
кількістю ступенів свободи термодинамікою не 
розглядаються. Термодинаміка не вивчає руху такої 
системи як цілого: отже, центр мас системи 
вважається нерухомим. Таким чином, як сумарний 
імпульс системи, так і сумарний момент імпульсу є 
нульовими: 

  

0lL
j

j    (1);  0
j

jpP   (2)  

де( Nj ,...,2,1 )— індекс, який нумерує частинки системи. 

 

 

Термостат. Якщо вивчається частина великої системи (підсистема ), то 
решту системи вважаємо оточуючим середовищем, довкіллям, або термостатом 
(рис.1).Підсистема відділена від термостату кордонами, які можуть бути 
реальними, або уявними поверхнями розділу. Термостат може накладати певні 
умови на підсистему, яка вивчається: наприклад умови постійної (сталої) 
температури, сталого тиску, конкретні умови обміну енергією, частинками, 
тощо. 

Термостат знаходиться з підсистемою у термодинамічному контакті. Під 
термодинамічним контактом двох систем розуміють наявність хоча б однієї з 
трьох можливих типів взаємодій: 

 Механічна взаємодія: якщо одна з систем здійснює роботу над іншою 
за допомогою механічних, або електромагнітних сил; 

 Теплова взаємодія: якщо дві системи обмінюються енергією за рахунок 
зіткнення їх частинок на кордонах, по яким контактують системи 
(теплопровідність), або за рахунок випромінювання електромагнітної 
енергії (теплова радіація); 

 Матеріальна взаємодія: якщо системи обмінюються частинками 
(речовиною) поміж собою крізь кордони. Така взаємодія обов’язково 
супроводжується також обміном енергією, яку переносять з собою 
частинки від системи до системи.  

Рис.1 Підсистема 
і термостат 

Термостат

 
Підсист
ема 
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Таблиця 1 дає класифікацію важливих типів термодинамічних систем за 
ознакою наявності, або відсутності певних взаємодій з наведеного вище 
переліку: 

 

 

 

 

 

 

Назва 
(визначення) 
ТД- системи 

Припустимі 
взаємодії 

Відсутні 
взаємодії 

Ізольована 
  

  Механічна 
 Теплова 
 Матеріальна 

Адіабатична 
 

 Механічна  Теплова 
 Матеріальна  

Замкнена  Механічна  
 Теплова 

 матеріальна 

Відкрита 
  

 Механічна 
 Теплова 
 Матеріальна 

 

 

Стан конкретної термодинамічної системи (ТД-системи) характеризують 
обмеженим набором термодинамічних параметрів: 

 Nn aaaa ,...,,...,, 21    (3) 

Кількість таких параметрів (їх ще називають термодинамічними змінними, 
або змінними стану) встановлюється емпірично: проте чим складніша 
система, тим більша кількість параметрів потрібна для її опису. 

Рівноважний стан системи визначається як стаціонарний та однорідний 
відносно параметрів (3) стан. Іншими словами в рівноважному стані 
параметри (3) не залежать ані від часу: 

),...,2,1(0 Nn
t

an 



   (4) 

ані від координат: 

),...,2,1(0 Nnaagrad nn  rr  (5) 

Умови стаціонарності (4) та однорідності (5) є необхідними і достатніми 
для рівноважного стану системи, рівноваги. Рівноважні стани потребують 
меншої (взагалі мінімальної) кількості термодинамічних змінних для свого 
опису, порівняно з нерівноважними станами. 

Термодинамічні параметри також класифікують за такими ознаками: 

 Внутрішні параметри – такі параметри, які залежать виключно від 
властивостей самої ТД-системи і не залежать від позасистемних сил, 
або тіл 
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 Зовнішні параметри – цілком визначаються дією тіл (або сил), які не 
входять до складу ТД-системи. 

Класифікуючи той чи інший параметр як внутрішній, або зовнішній, треба 
бути уважним і обережним. Наприклад, для газу в замкненому балоні об’єм 
(V ) є зовнішнім параметром, а тиск в балоні (P ) – внутрішнім. Проте, 
для того самого газу, якщо він знаходиться в циліндрі під рухливим 
поршнем, все навпаки: тиск є зовнішнім параметром, а об’єм газу під 

поршнем – внутрішнім. 

Окрім поділу на внутрішні та зовнішні параметри ТД-системи поділяють на: 

 Інтенсивні параметри – такі, що не залежать від маси речовини в 
системі, або, що еквівалентно, від кількості частинок в системі, 
як-от: температура, тиск, концентрація, хімічний потенціал, тощо. 

 Екстенсивні параметри – такі, що залежать від маси (або кількості 
речовини) в системі, як-от: маса, кількість частинок, об’єм 
системи, ентропія системи, тощо. 

 
 Температура, нульове начало термодинаміки.  

 
 
 
 
 
 
 
Будь-яка ізольована ТД-система (наприклад газ у судині з 
нетеплопровідними і непроникними стінками), незалежно від свого 
початкового стану, з часом сягає стану, який далі вже не змінюється, є 
стаціонарним і однорідним. Такий рівноважний стан з макроскопічної точки 
зору описується обмеженим набором незалежних від часу та координат 
параметрів. На мікроскопічному рівні частинки продовжують свої складні, 
невпинні рухи, втім з макроскопічної точки зору термодинамічно 
рівноважний стан є простим станом, який визначається кількома 
макропараметрами, такими як температура, тиск, об’єм тощо, незалежними 
від часу та координат. 

Якщо дві ізольовані системи, A і B , об’єднують в одну систему BA , то 
з часом в об’єднаній системі також встановлюється рівновага. В такому 
разі кажуть, що системи A і B  перебувають в тепловій рівновазі. Кожна з 
них, як підсистема системи BA , перебуває у рівноважному стані також. 
Така рівновага не порушиться, якщо системи на певний час роз’єднати, а 
далі відновити їх контакт. Отже, якщо об’єднання двох ізольованих систем 
не призводить до жодних змін в стані кожної з них, можна вважати, що вони 
перебувають у тепловій рівновазі одна з одною: BA ~ . 

Закон транзитивності термодинамічної рівноваги  стверджує, що «якщо 
системи A і B  перебувають в рівновазі, і, крім того, системи B  і C  
теж перебувають в рівновазі, то і системи A і C  повинні перебувати в 
рівновазі одна до іншої». Іншими словами: 

CAthenCBandBAif ~~~   (6) 

Дещо інша форма цього закону належить Дж.К.Максвелу: «Два тіла ( BA, ), 

які перебувають у термодинамічній рівновазі з третім тілом(C ) 
перебувають у термодинамічній рівновазі одне з одним».   
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Цей закон встановлений емпірично, часто називають нульовим законом 
термодинаміки. Природно вважати, що три тіла (системи), які перебувають у 
термодинамічній рівновазі мають однакове значення певного 
термодинамічного параметру, який отримав назву температури. Цей 
термодинамічний параметр очевидно завжди є внутрішнім та інтенсивним. 
Незважаючи на те, що більшість людей мають уявлення про температуру, 
визначення цього поняття є доволі складним, принаймні у межах 
термодинаміки. Нульовий закон фактично дає нам лише алгоритм порівняння 
температур двох систем і вирішення питання, чи вони є однаковими 
(термодинамічна рівновага спостерігається), чи різними (рівновага 
відсутня).  

Температура є фізичним макропараметром системи, який віддзеркалює 
інтенсивність випадкових рухів на мікроскопічному рівні системи. З точки 
зору молекулярно-кінетичної теорії температура є мірою середньої енергії 
цих мікроскопічних рухів. Суб’єктивно температура пов’язана з поняттям 
«гарячого» та «холодного»: вона є вищою для того з двох тіл, яке більш 
нагріте (частинки якого мають більшу середню енергію). Температура є 
фундаментальним термодинамічним параметром. 

 

 Гомогенні і гетерогенні системи. Рівноважні і нерівноважні процеси.  
 
Система є однорідною, або гомогенною, якщо її параметри  na  
задовольняють умові (5), яка може бути деталізована у вигляді: 

),...,2,1(0 Nn
z

a

y

a

x

a nnn 











  (6) 

Система є неоднорідною, гетерогенною, якщо умови, (5,6) 
не виконуються. Гетерогенна система, наприклад, дуже 
часто може складатися з гомогенних підсистем, параметри 
яких однорідні у межах підсистеми, та втім потерпають 
стрибкоподібних змін на кордонах поміж підсистемами. 
Гетерогенні системи не можуть бути рівноважними за 
визначенням, оскільки не задовольняють умовам рівноваги 
(4,5). 

Термодинамічним процесом взагалі називають будь-яку 
зміну стану системи. Зрозуміло, що в такому разі хоча б 
одна з умов стаціонарності (4) повинна порушуватися, і 
хоча б один з параметрів системи мусить змінюватися в 
часі. Таким чином, рівноважний стан системи 
порушується.  

Втім для кожної ізольованої системи, яка перебуває у 
нерівноважному стані, можна ввести таку характеристику 

як час релаксації -  . Під часом релаксації розуміють характерний час, 
за який ізольована ТД-система практично повністю повертається в стан 
рівноваги за рахунок суто внутрішніх процесів релаксації (заспокоєння).  

Припустимо тепер, що макропараметр )(tan , який характеризує систему 
змінюється в часі під дією деякого зовнішнього фактору, який впливає на 

стан нашої системи, з характерною швидкістю 
t

an




 від певного початкового 

нерівноважного значення 0)()0(  tnn taa . Порівняємо цю швидкість з середньою 

швидкістю релаксації цього ж параметру до рівноважного значення: 


na
, 
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де )()0( nnn aaa   - різниця поміж нерівноважним та рівноважним значенням 
параметру. Якщо маємо: 


nn a

t

a 





    (7) 

Тоді помітна зміна зовнішнього фактору відбувається за проміжки часу T , 
який визначається з умови:  

n
n

T
n aT

t

a
dt

t

a









0

   (8) 

Нерівність (7) фактично означає, що  

T         (9) 

Отже, ТД-система релаксує (досягає рівноваги) значно швидше, ніж суттєво 
змінюється макропараметр )(tan . За таких умов у кожний момент часу 
система встигатиме здобути стан рівноваги, відповідний кожному миттєвому 
значенню параметру )(tan  і зовнішньому фактору, який керує зміною цього 
параметру. 

Термодинамічні процеси, які задовольняють умовам (7,9) надалі 
називатимемо квазістатичними, або оборотними процесами. Умови (7,9) є 
умовами повільності оборотних процесів порівняно з процесами релаксації. 
Квазістатичні, або оборотні процеси, інколи називають також рівноважними 
процесами. Оборотність процесу означає можливість його реверсу, обернення 
в часі, причому зворотній процес проходить через ту саму сукупність 
рівноважних станів, що й прямий, лише в зворотній послідовності. У будь-
якій системі координат графік прямого та зворотного процесу співпадають 
для оборотних процесів. Порушення умов (7,9) призводять до необоротних 
(нерівноважних) процесів, які не вивчаються в межах класичної 
термодинаміки. 

  
 Внутрішня енергія системи. Робота і теплота. Термічне і калоричне 

рівняння стану. 
 
Ключовим поняттям термодинамік є  поняття внутрішньої енергії ТД-системи. 
Внутрішня енергія U  системи з точки зору статистичної фізики є просто 
енергією теплового руху мікрочастинок, з яких складається система. У 
межах феноменологічного підходу класичної термодинаміки, яка не розглядає 
внутрішньої структури тіл (систем), внутрішня енергія розглядається як 
деяка функція стану системи, яка не залежить від її історії. Іншими 
словами внутрішня енергія у певному стані системи ( 1U ) не залежить від 
того яким шляхом система потрапила в такий стан (1). Отже, різниця 
внутрішніх енергій двох станів 2112 UUU   не залежить від того, яким 
способом система переводиться зі стан 1 до стану 2. 

Отже, внутрішня енергія системи залежить від її стану, який у свою чергу 
залежить від температури довкілля, термостату. В стані рівноваги 
температура системи дорівнює температурі термостату, таким чином 
внутрішня енергія системи залежить від її температури та зовнішніх 
параметрів:  

 ),( iTUU    (10) 
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Де    ,...,...,, 21 ii   - набір зовнішніх параметрів, які характеризують стан 

системи. Цей набір надалі позначатимемо просто i , опускаючи фігурні 
дужки для простоти запису. 

Внутрішня енергія системи має важливу властивість адитивності: енергія 
складної системи дорівнює сумі енергій її підсистем. Можна сказати також, 
що внутрішня енергія є внутрішнім екстенсивним параметром системи. (При 
цьому, зрозуміло, нехтують енергією взаємодії макроскопічних підсистем 
поміж собою порівняно з їх внутрішньою енергією.) 

Внутрішня енергія може передаватися від системи до системи трьома 
принципово різними шляхами, які пов’язані з трьома можливими взаємодіями 
(механічною, тепловою та матеріальною) зазначеними вище:  

 Безкінечна мала кількість внутрішньої енергії, переданої, або 
отриманої, шляхом механічної взаємодії поміж системами, називається 
елементарною роботою A . Робота завжди здійснюється за рахунок 
зміни певного зовнішнього параметру   :  

 A     (11) 

Де під  розуміємо спряжену до зовнішнього параметру   так звану 
узагальнену термодинамічну силу2. Знак роботи визначається 
умовністю: найчастіше робота вважається позитивною, якщо вона 
здійснюється системою ( 0A ) і негативною , якщо вона здійснюється 
над системою ( 0A ). 

 Безкінечно малий обмін внутрішньою енергією між системами, який не 
пов’язаний із зміною зовнішніх параметрів, і відбувається шляхом 
теплової взаємодії, називається кількістю теплоти q , (отриманої 

системою, тоді 0q , або відданої, тоді 0q ). Під час теплової 
взаємодії відбувається зміна температури, тому кількість теплоти 
завжди пропорційна зміні температури: 

dTq ~   (12) 

 Безкінечно малий обмін внутрішньою енергією z  можливий також під 
час обміну частинками dN  поміж системами: 

dNz     (13) 

Де під   розуміють середню енергію, яку переносить з собою одна 
частинка. 

Рівнянням стану ТД-системи називається будь-яке рівняння, яке пов’язує 
між собою її термодинамічні (макроскопічні) параметри. Термічне рівняння 
стану в загальному вигляді є певним рівнянням, вигляду: 

0),,( iNTF    (14) 

Калоричним рівнянням стану називають залежність внутрішньої енергії від 
температури, кількості частинок та набору зовнішніх параметрів: 

),,( iNTUU    (15) 

                                                 
2 Пари величин  , , такі, що їх добуток визначає елементарну роботу:  dA  , 
у теромдинаміці називають спряженими змінними 
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Рівняння стану не виводяться у межах термодинаміки, оскільки вона не 
цікавиться внутрішнім укладом системи. Всі рівняння стану повинні 
привноситися у термодинаміку ззовні, наприклад з молекулярно-кінетичної 
теорії, або статистичної фізики. 

 

 
 

 Перше начало термодинаміки. Рівняння першого начала термодинаміки. 
 
Перше начало (перший закон) термодинаміки являє собою варіант закону 
збереження енергії, і стверджує, що «під час переходу системи з 
термодинамічного стану 1 до термодинамічного стану 2 сума отриманої від 
термостату (оточуючого середовища) роботи A  , тепла Q, та отриманої за 

рахунок переносу речовини (частинок) енергії Z , дорівнює зміні 
внутрішньої енергії системи 12 UU  . Ця сума залежить лише від початкового 
стану 1 та кінцевого стану 2 і не залежить від способу, яким система 
здійснювала перехід 21 ». Математично сформульований закон можна 
записати у вигляді: 

ZQAUU  12     (1) 

Від’ємний знак перед роботою в правій частині (1) зумовлений тим, що 
робота здійснюється термостатом над системою, отже, за умовою вона 
вважається від’ємною. 

Рівняння (1) є інтегральною формою першого закону термодинаміки для 
відкритої системи. Якщо записати його для замкненої системи ( 0Z ), воно 
спрощується до вигляду: 

QAUU  12          (1а) 

Для адіабатичної системи ( 0QZ ) форма закону ще простіша: 

AUU  12               (1в) 

Якщо розглядати циклічні процеси (цикли), тобто такі процеси, в яких 
будь-який стан можна вважати початковим і одночасно кінцевим, і графік 
яких є замкненою кривою (C ), то  у таких процесах вочевидь зміна 
внутрішньої енергії повинна бути нульовою ( 12 UU  ): 

 
C

dUU 0   (2) 

Для циклових процесів, рівняння (1) приймає вигляд: 

0 CCC ZQA    (3) 

Або у еквівалентному вигляді: 

CCC ZQA        (4) 

Отже, робота здійснена за один цикл системою над термостатом дорівнює 
сумі кількості теплоти та енергії масопереносу, отриманих від термостату 
за один цикл. При зворотному напрямі циклу, навпаки, робота споживається 
(тобто термостат здійснює роботу над системою), тоді як сума теплоти та 
енергії масопереносу віддаються термостату. 

Вічний двигун першого роду мусив би лише здійснювати циклічну роботу над 
термостатом ( 0CA ), нічого не отримуючи від нього ( 0 CC ZQ ), або 
принаймні виробляти більше роботи, ніж отримано енергії від термостату: 
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( CCC ZQA  ). Рівняння (4) заперечує можливість такої нерівності, отже, 
й існування такого двигуна. Таким чином, перший закон термодинаміки є 
принципом неможливості вічного двигуна першого роду. 

Перший закон термодинаміки стверджує, що внутрішня енергія системи є 
функцією стану системи, і зміна внутрішньої енергії в так званих 
інфінітезимальних процесах (процесах в яких початковий та кінцевий стан 
відрізняються безкінечно малими змінами параметрів) є повним 
диференціалом: dU . У такому разі зміна внутрішньої енергії в звичайному 
ТД-процесі заходиться елементарно: 

1

2

1

212 UUdUU       (5) 

Інтеграл (5) залежить лише від кінцевого (2) та початкового (1) стану 
системи і не залежить від способу, яким система переходила поміж цими 
станами. Звідси й висновок про нульове значення цього інтегралу для 
циклових процесів: яким би не був термодинамічний цикл, інтеграл (2) 
автоматично обертається в нуль, оскільки початковий і кінцевий стан 
співпадають. 

На відміну від внутрішньої енергії, кількість теплоти 12Q , отриманої 

протягом процесу, робота процесу 12A , а також енергія масопереносу 12Z  
залежать не лише від початкового та кінцевого станів системи, але і від 
того, яким способом система переходила від стан 1 до стану два. Тому для 
згаданих вище інфінітезимальних процесів зміни цих величин ( ZAq  ,, ) не 
є повними диференціалами. Інтеграли: 

;;;
2

1

12

2

1

12

2

1

12   ZZAAqQ      (6) 

На відміну від інтеграла (5) залежать від способу (процесу), яким система 
переводиться з початкового стану в кінцевий і не можуть бути представлені 
як різницею двох величин, залежних лише від стартового та фінішного стану 
системи. Отже, ані робота циклового процесу, ані баланс тепла в циклі, 
ані баланс енергії масопереносу, не є нульовими. В цикловому процесі 
нульовою є лише їх сума, як вказує рівняння (3). У звичайному, не 
цикловому, процесі сума цих трьох величин 121212 ZQA   є функцією стану, 
як це видно з рівняння (1). 

Для інфінітезимальних процесів перше начало термодинаміки можна записати 
у диференціальному вигляді: 

ZqAdU      (7) 

де для квазістатичних (оборотних процесів) можна вважати, що: 

















j
jj

i
i

i

dNZ

dA




   (8) 

Де індекси ji,  - нумерують відповідно зовнішні параметри системи та різні 
типи (сорит) частинок, з яких складається система. Серед зовнішніх 
факторів системи вирізнимо один – об’єм системи V . Припустимо далі, що 
робота здійснюється саме за рахунок зміни цього параметру: 0dV . 
Зафіксуємо кількість частинок в системі constN j   і вважатимемо, що 

система є адіабатичною 0q . Тоді з (7) маємо: 
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APdVdV
V

U
dU

ad











     (8) 

Де P  - тиск у термодинамічній системі, який грає роль узагальненої 
термодинамічної сили P  стосовно спряженого йому зовнішнього параметру 

V . 

 

 Теплоємності і теплоти ізотермічних  змін зовнішніх параметрів. 
Загальний вираз для зв’язку між теплоємностями при сталому тиску і 
сталому об’ємі. 

 
Хай системі передається певна кількість q  теплоти в квазістатичному 
(оборотному процесі). Припустимо також, що передача здійснюється в такому 
процесі, що температура системи зростає на dT , а деякий системний 
термодинамічний параметр при цьому зберігається consta  . За таких умов 
величину: 

a
a dT

q
C 









     (9) 

Назвемо теплоємністю системи. Теплоємність розрахована на одиницю маси 

 

m

C
C am

a
  називають масовою питомою теплоємність. Теплоємність розраховану 

на один кіломоль речовини    ma
aa

C
z

C
C    називають мольною теплоємністю. 

Надалі розглядатимемо саме її. 

Розглянемо просту замкнену систему ( 0Z ), стан якої визначається лише 
одним зовнішнім параметром   . перший закон термодинаміки для такої 
системи (7) можемо переписати у вигляді: 

  dUq    (10) 

Або в еквівалентному вигляді: 



























 d
U

dT
T

U
q

T

   (11) 

Звідси для теплоємності з (9) та (11) можемо отримати: 






































dT

U

T

U

dT

q
C

T








    (12) 

Практично цікавими є дві теплоємності: теплоємність за умови сталого 
значення зовнішніх параметрів ( 0 , const ): 


 











T

U
C      (13) 

І теплоємність в умовах сталого значення спряженої термодинамічної сили 
( const ): 


 





































dT

U

T

U
C

T




   (14) 

Якщо прийняти, що PV  , , то з (13,14) маємо: 
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PT
VP T

V
P

V

U
CC 





























         (15) 

З цих вразів для теплоємностей та їх різниці видно, що для визначення 
теплоємності (13), або VC , необхідно знати лише калоричне рівняння стану 

( ),,(  TUU ) , тоді як для визначення теплоємності (14), або PC , 
необхідно також знання термічного рівняння стану системи.  

Для ідеального газу термічним рівнянням стану є рівняння Мендєлєєва-
Клапейрона. Для одного кіломоля воно має форму:  

RTPV      (16) 

Калоричне рівняння стану для ідеального газу можна встановити із закону 
Джоуля, який стверджує, що «внутрішня енергія ідеального газу не залежить 
від об’єму», отже для ідеального газу: 

0









TV

U
    (17) 

Звідси та рівнянь (13-15) маємо корисні співвідношення: 


T

VV dTCUdTCdU
0

;     (18) 

З останнього рівняння маємо калоричне рівняння стану для ідеального газу: 

TCUTU V 0)(     (19) 

Де константа інтегрування )0(0 UU   може бути покладена нульовою. 

З рівняння (15,16,19) неважко отримати рівняння Майора для зв’язку 
теплоємностей при сталому тиску та сталому об’ємі для одного кіломоля 
ідеального газу:  

RCC VP      (20) 

Окрім теплоємностей іншою важливою термодинамічною величиною є теплота 
ізотермічної зміни певного зовнішнього параметру системи, або кількість 
теплоти q , яка потрібна для зміни параметру на величину   за умови 
постійної температури ( 0dT ): 

T

q
l 










    (21) 

Наприклад теплота розширення системи ( V  ) дорівнює: 

T
V V

q
l 










   (22) 

З першого закону термодинаміки у формі (11) та (22) маємо: 

V

VP
V
U

dT
T
U

l T
V 






























     (23) 

Звідки для ідеального газу, наприклад, з урахуванням закону Джоуля (17), 
а також умови ізотермічности 0dT , отримуємо: 

PlV         (24) 
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Ізотермічна теплота розширення ідеального газу чисельно дорівнює його 
тискові. 

Використовуючи поняття теплоємностей та ізотермічних теплот зміни 
зовнішніх параметрів: 












T

U
l

     (25) 

Запишемо перший закон термодинаміки у новій формі: 

 ldTCq V      (26) 

У разі декількох зовнішніх параметрів  i , другий фактор у (26) 
мусить стояти під знаком суми по всьому набору параметрів: 


i

iV i
ldTCq        (27) 

 

 Основні термодинамічні процеси (ізотермічний, адіабатний і 
політропний) та їх рівняння.  

 
В кожній термодинамічній системі можливі наступні три термодинамічні 
процеси: 

 Ізотермічний ( 0;  dTconstT ) 

 Адіабатичний ( 0q ) 

 Політропний  ( constC  ) 

В простих системах з одним зовнішнім параметром   можливі також процеси 
із збереженням як параметру const , так і процеси за умови const . 
Якщо зовнішнім параметром є об’єм системи, то процес при сталому об’ємі 
( 0,  dVconstV ) називають ізохорним, а процес при сталому тискові 

( 0,  dPconstP ) - ізобарним . Складні системи з набором зовнішніх 

параметрів  i  допускають і більшу кількість подібних процесів.  

Перераховані вище п’ять термодинамічних процесів вважаються у 
термодинаміці основними. Функціональний зв’язок поміж будь-якою парою з 
трьох параметрів ( TVP ,, ), який виникає в одному з перелічених вище 
процесів називають рівнянням процесу.   

Рівняння ізохорного, ізобарного та ізотермічного процесів можна отримати 
без використання першого закону термодинаміки безпосередньо з термічного 
рівняння стану системи: 

0),,( TVPF      (24) 

Фіксуючи в рівнянні (24) одну з трьох змінних, отримуємо відповідне 
рівняння одного з трьох процесів: ізохорного, ізобарного, або 
ізотермічного. 

Рівняння політропного та адіабатного процесу (останній вочевидь є 
частковим випадком першого за умови 0 constC ) не можна отримати лише з 
термічного рівняння стану системи (24), оскільки теплоємність системи не 
входить в це рівняння. Втім їх можна знайти, використовуючи калоричне 
рівняння стану та перший закон термодинаміки. 
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Знайдемо рівняння більш загального процесу, політропного, для випадку 
простої системи з одним зовнішнім параметром і для ідеального газу. Для 
політропного процесу з умови незмінності теплоємності маємо: 

CdTqconst
dT

q
C  

;      (25) 

За першим законом термодинаміки у формі (11): 


 




















T

U
dTCCdT     (26) 

Використовуючи результати (13-15), перепишемо (26) у формі: 

    



 
























T

CC
dTCC       (27) 

Якщо в загальному випадку вважати, що CC  , то з (27) виникає: 

0























 


 T

CC

CC
dT     (28) 

Останнє рівняння представляє рівняння політропи в диференціальній формі в 
площині двох змінних ( ,T ). В площині змінних ( , ) рівняння політропи 
можна переписати, якщо підставити у (28) диференціал температури: 

























 

TT
dT    (29) 

Тоді рівняння (28) набуває форми: 

0
































 





T

CC

CCT
   (30) 

Рівняння адіабати можна отримати, спрощуючи (30) за умов: 0C  та 


 C

C  . Для адіабати маємо: 

0



























TT
       (31) 

Для політропи, позначаючи показник політропи: 

CC

CC
n




 



        (32) 

Отримуємо подібну форму рівняння (31): 

0



























T
n

T
    (33) 

Для інтегрування рівнянь (32,33) необхідно знати як термічне рівняння 

стану ( 0),,(  TF , для визначення похідних    
 







TT , )  так і 

калоричне рівняння стану (  ,,( TUU ), для визначення теплоємностей, які 
фігурують у показнику політропи (32)). 
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Припустимо, що система перебуває під дією сил всебічного тиску, тобто 
VP  , , то рівняння (33) приймає вигляд: 

0



















V
V

T
nP

P

T

PV

      (34) 

Для ідеального газу значення похідних у рівнянні (34) визначимо за 
допомогою рівняння (16): 

R

P

V

T

R

V

P

T

PV





















;     (35) 

Підставляючи (35) у (34) отримуємо рівняння політропи для ідеального 
газу: 

0 VnPPV              (36) 

Розділимо змінні в останньому рівнянні: 

V

V
n

P

P 
       (37) 

Після чого його інтегрування є елементарним: 

constPV n       (38) 

Рівняння для адіабати відрізняється лише заміною n  на  : 

constPV       (39) 

На рисункові наведені графічні зображення ізотермічного(1), 
адіабатичного(2, 5/7 ) та політропного (3, 8,1n ) процесів в координатах 

PV  . Як видно з поведінки кривих, найшвидше змінюється політропа. 
Графіки ізохоричного та ізобаричного процесів у 
таких координатах є тривіальними: вертикальна 
та горизонтальна прямі відповідно. 

 

 Зв’язок між коефіцієнтами пружності і 
теплоємностями 

Модулем пружності називають коефіцієнт, який 

пов’язує відносну зміну об’єму V
V    із зміною 

тиску P : 









V

P
VK




   (40) 

Похідна в (40) залежить від умов стискання: 
найчастіше розглядають ізотермічний та адіабатичний модулі пружності: 

T
T V

P
VK 










    (41) 

 

S
S V

P
VK 










    (42) 

Відношення цих модулів таке: 
 
  T

S

T

S

VP

VP

K

K





/

/
  (43) 

 

1

2

3
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З диференціального рівняння адіабати (34) находимо: 

 
 V

P

S PT

VT

V

P














/

/     (44) 

З термічного рівняння стану ),( PVTT   отримуємо: 

P
P

T
V

V

T
dT

VP

 



















  (45) 

Нарешті з урахуванням умови ізотермічності ( 0dT ) маємо з (44): 

 
 V

P

T PT

VT

V

P














/

/
       (46) 

Комбінуючи рівняння (43-46) отримуємо остаточно: 

V

P

T

S

C

C

R

K
                 (47) 

Таким чином, відношення адіабатного та ізотермічного модулів пружності 
довільної речовини дорівнює відношенню її теплоємностей при сталому 
тискові та сталому об’ємі.   

 

 

 

Термодинаміка: лекція № 2  

Специфічність теплоти як форми передачі  енергії. Друге начало 
термодинаміки. Вихідне формулювання другого принципу 
термодинаміки. Оборотні і необоротні процеси. Ентропія і абсолютна 
температура. Термодинамічна шкала температур.  

Основне рівняння термодинаміки для рівноважних процесів. Зв’язок між 
термічним і калоричним рівняннями стану.  

Зростання ентропії при дифузії газів і парадокс Гіббса. Друге начало 
термодинаміки для нерівноважних процесів. Закон зростання ентропії.  
 

 Друге начало термодинаміки. Вихідне формулювання другого принципу 
термодинаміки. Оборотні і необоротні процеси. Ентропія і абсолютна 
температура. Термодинамічна шкала температур. 

 
Відкриття другого закону (начала) термодинаміки пов’язане з теорією 
теплових машин, основи якої заклав французький військовий інженер Саді 
Карно у 1824 році. Так само як і перший закон термодинаміки, другий закон 
є узагальненням досвіду і практики перетворення теплоти в роботу у так 
званих теплових двигунах і зворотного процесу в холодильних машинах.  

Вивчаючи теплоту та роботу як дві форми передачі внутрішньої енергії, 
можна помітити, що ці форми нерівнозначні (не еквівалентні). Наприклад, 
механічну роботу можна повністю, без останку, перетворити в теплоту, 
змінюючи лише стан системи, яка отримує тепло (припустимо, під час 
нагрівання тіла за рахунок тертя, або за рахунок електричного підігріву 
струмом).  
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Однак, під час перетворення теплоти в работу разом з охолодженням джерела 
теплоти (нагрівача) відбувається також зміна стану інших тіл, яким 
передається певна кількість теплоти, яка, зрозуміло, в роботу не 
перетворюється. У циклових процесах під такими «іншими тілами» треба 
розуміти холодильник теплової машини. Для відкритих (незамкнених, не 
циклових) процесів частину тепла від нагрівача відбирає робоче тіло. 

Така нерівноправність, нееквівалентність, перетворень теплоти в роботу і 
роботи в теплоту веде до однобічності природних процесів: самовільні, 
невимушені (спонтанні) процеси в замкненій системі відбуваються в напрямі 
поступового зникнення потенціальне можливої роботи. Практика не 
демонструє випадків спонтанного переходу теплоти від холодного тіла до 
гарячого: вода у посудині не закипить на брилі криги. Під час теплового 
контакту двох систем (або тіл) тепло переходить спонтанно лише від 
гарячого тіла до холодного доти, доки їх температури не вирівнюються. 

Якщо поміж тілами (системами) існує різниця температур, то такий перепад 
температур можна отримати роботу, використовуючи ці тіла як нагрівач та 
холодильник, тобто існує потенціальне можлива робота. Спонтанний процес 
вирівнювання температур під час теплообміну поміж цими тілами саме й веде 
до зникнення такої потенціальне можливої роботи. 

Якщо називати прилад, який повністю і періодично перетворює тепло 
нагрівача в механічну роботу вічним двигуном другого роду, тоді вихідне 
формулювання другого закону термодинаміки можна викласти наступним 
способом: «Вічний двигун другого роду неможливий». 

Зворотне твердження не є справедливим, оскільки перетворити механічну 
роботу в теплоту можна періодично і повністю. 

Отже, якщо певна кількість теплоти 1Q , відібрана у нагрівача, 

перетворюється в роботу A, то завжди маємо AQ 1 , тому що певна частина 

теплоти 2Q  передається холодильнику (цей процес передачі тепла 
холодильнику часто називають компенсацією). У підсумку маємо баланс:  

121 QQQA      (1) 

Якщо назвати коефіцієнтом корисної дії теплового двигуна відношення: 
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Тоді вихідне формулювання другого закону термодинаміки можна дати у 
формі: «Тепловий двигун з 1  неможливий як вічний двигун другого роду». 

Згідно з другим законом термодинаміки в природі можливі процеси 
перетворення тепла в роботу з компенсацією, і неможливі такі процеси без 
компенсації. Це ділить всі процеси в замкнених системах на два типи: 
оборотні і необоротні процеси.  

Процес переходу системи зі стану 1 в стан 2 називатимемо оборотним, якщо 
можливе повернення системи зі стану 2 у стан 1 без жодних змін в оточенні 
системи (термостаті). Якщо вихідний стан системи і термостату позначити 
символом ),1(  , а кінцевий стан відповідно ),2(  , то в оборотному процесі 
маємо: 

),1(),2(),1(      (3) 

В протилежних випадках процес вважається необоротним, таким, що викликає 
зміни в оточуючому середовищі (термостаті) при здійсненні в зворотному 
напрямі. Іншими словами, у таких процесах у вихідний стан не повертається 
або система, або термостат, або й вони обидва. 
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Очевидно, що всі квазістатичні (рівноважні) процеси є оборотними. 
Необоротні процеси одночасно є також і нерівноважними. 

Визначимо диференціал деякої нової функції стану системи рівнянням 
Клаузіуса: 

T

q
dS


     (4) 

Функцію ),,( TS  називатимемо ентропією системи, а величину T  - 
термодинамічною абсолютною температурою.   

Із того, що ентропія є функцією стану виникає, що зміна ентропії в 

цикловому процесі дорівнює нулю: 0dS . В адіабатичному процесі ( 0q ) 

ентропія не змінюється: 0dS , тому адіабатичні процеси можна також 
називати ізоентропійними. 

Математично другий закон термодинаміки для рівноважних процесів можна 
записати у вигляді (4), або дещо інакше: 

TdSq     (5) 

Це рівняння для елементарної  теплоти має такий самий вигляд як рівняння 
для елементарної роботи: 

 dA     (6) 

Причому роль зміни зовнішнього параметру   грає зміна ентропії dS , а 
роль спряженої термодинамічної сили – абсолютна температура - T . 
Інтегральним виразом другого закону термодинаміки для рівноважних 
процесів є рівняння Клаузіуса: 

0 T
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   (7) 

 

 Основне рівняння термодинаміки для рівноважних процесів. Зв’язок 
між термічним і калоричним рівняннями стану.  

 

Згідно з другим законом термодинаміки, TdSq  , а також першим законом 

термодинаміки маємо для замкненої системи ( 0dN ): 


i

iidTdSdU      (8) 

Або у більш загальному вигляді для відкритої системи: 

 
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ii dNdTdSdU     (9) 

Де індекси ...;2,1,...;2,1  ji  відповідно нумерують зовнішні параметри та 
спряжені до них термодинамічні сили, та різні сорти частинок. Рівняння 
(8,9) називають основним рівнянням термодинаміки рівноважних процесів. 

У випадку простої замкненої системи, де є лише один зовнішній 
параметр,V , і спряжена до нього сила ,P  , з рівняння (8) отримуємо: 

VPdUTdS      (10) 

Як ми бачили вище для розрахунків багатьох величин потрібні як термічне 
так і калоричне рівняння стану, які експериментально встановлюються 
незалежно одне від одного.  Наприклад, для кіломоля ідеального газу , як 
відомо: 
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RTPV         (11) 

TCUU V 0     (12) 

Де(11) є термічним, а (12) – калоричним рівнянням стану. 

З основного рівняння термодинаміки (8) виникає: 
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Звідки для похідних від ентропії маємо: 
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З відомої у математиці тотожності для часткових похідних:  
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маємо: 
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Звідки вже можна отримати наступний вираз: 
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      (17)      

Для простої системи останнє рівняння приймає вигляд ( PV  , ): 
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Яке є рівнянням зв’язку поміж термічним та калоричним рівняннями стану: 
),,(;0),,(   TUUTF . Дійсно, рівняння (17,18) пов’язують похідні від 

термодинамічних сил по температурі, для отримання значень котрих 
необхідне термічне рівняння стану, з похідними від внутрішньої енергії по 
зовнішнім параметрам, для визначення котрих необхідне калоричне рівняння 
стану.  

Використовуючи рівняння (11) для ідеального газу, для  похідної від тиску 
по температурі отримуємо вираз: 
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З рівнянь (11,18,19) випливає закон Джоуля для ідеального газу: 
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- закон незалежності внутрішньої енергії ідеального газу від його об’єму, 
яка й приводить до рівняння (12). 
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 Зростання ентропії при дифузії газів і парадокс Гіббса. Другий 
закон (начало) термодинаміки для нерівноважних процесів. Закон 
зростання ентропії.  

 
Згідно з основним рівнянням термодинаміки (8) зміни ентропії системи за 
рахунок рівноважного переходу системи зі стану 1 до стану 2 визначається 
інтегралом: 
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Для обчислення зміни ентропії за (21) необхідно знання як термічного 
рівняння стану (у формі ),( iii T  ) так і калоричного рівняння стану 

( ),( iTUU  ). Втім, якщо скористатися рівнянням (13) для диференціалу dS  
можна переписати (21) у вигляді: 
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Використовуючи рівняння (17), яке пов’язує термічне та калоричне рівняння 
стану, інтеграл (22) можна переписати у вигляді: 
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З останнього виразу зрозуміло, що можна обійтися лише термічним рівнянням 
стану та залежністю внутрішньої енергії від температури, оскільки її 
залежність від зовнішніх параметрів не потрібна. Тому перепишемо рівняння 
(23) у вигляді: 
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Для простої замкненої системи ( PV  , ) з (24) виникає: 
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Звідки для кіло моля ідеального газу, користуючись результатами 
отриманими вище(див.(19)), маємо: 
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З виразу (26) випливає формула для ентропії z -кіломолей ідеального газу 
у формі: 
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Де 0S  - адитивна константа, яку завжди можна вважати нульовою, змінюючи 

відлік ентропії, AN - кількість частинок в кіло молі (число Авогадро). 
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Якщо маємо суміш двох ідеальних газів в певному об’ємі V  (відповідна 
кількість 21, zz  -кіломоля кожного газу у суміші) то за допомогою безлічі 
напівпроникних перепонок, таких, крізь які проходять молекули одного з 
газів, але не проходять молекули іншого газу, можна в принципі розділити 
суміш на два компоненти, кожен з яких займатиме весь об’єм V . Такий 
уявний експеримент показує, що розділ суміші можливий без затрат роботи, 
або надання теплоти. Через те й ентропія системи при такому розділі є 
незмінною.  

Уявний експеримент спонукав Гіббса сформулювати теорему: «Ентропія суміші 
ідеальних газів є сумою ентропій цих газів, за умови, що кожний з них 
займає той же об’єм, що і вся суміш при її температурі». 

Знайдемо, користуючись цією теоремою, ентропію суміші двох ідеальних 
газів з парціальною кількістю кіломолів 21, zz , які до змішування 

(взаємній дифузії) займали відповідно об’єми 21,VV  , при однаковій 

температурі 21 TTT   та однаковй теплоємності VC  . Ентропія газів до 
змішування дорівнює (див.(27)): 
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Ентропія газів після змішування інакша: 
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Зміна ентропії внаслідок змішування (ентропія змішування): 
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У простому частинному випадку рівності парціальної кількості газів 
zzz  21 , які знаходилися до змішування в рівних об’ємах VVV  21 , 

маємо: 

  zRzRSmixt  386,12ln2     (31) 

З останнього рівняння видно, що ентропія змішування 
залежить лише від кількості газу z , але не залежить 
від їх природи.  

У граничному випадку змішування двох ідентичних 
газів ентропія змішування повинна була б 
дорівнювати нулю, оскільки ніякого термодинамічного 
процесу в системі не відбувається. Втім формула 
(31) передбачає певний ненульовий стрибок ентропії 
під час змішування. На цей парадокс свого часу 
звернув увагу Гіббс. Отже, змішування двох порцій 

ідентичного газу, тобто такого, який не підлягає розділенню на дві 
компоненти, не можна розглядати як граничний випадок змішування двох 
різних газів, які в принципі можна розділити. У першому випадку ентропія 
не змінюється, у другому має стрибок за формулою (30). 

Сформулюємо тепер другий закон термодинаміки для нерівноважних процесів. 
Розглянемо два близьких рівноважних стани системи: 1 та 2. Припустимо, що 
з першого стану до другого можна перейти як шляхом рівноважного 
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оборотного процесу, отримавши від деякого тіла кількість теплоти q  і 

здійснивши роботу A , причому згідно з першим законом термодинаміки: 

AdUq      (32) 

так і деяким нерівноважним способом з дещо іншими, нерівноважними, 
теплотою та роботою: 

AdUq
~~      (33) 

Перший перехід є оборотним, а другий необоротним, тобто повернути системи 
у вихідний стан у другому процесі без компенсації неможливо. Віднімаючи 
від рівняння (33) рівняння (32) отримуємо для нерівноважного циклового 
процесу, який складається з процесів (32,33) наступну умову: 

AAqq  
~~   (34) 

Обидві частини (34) не можуть бути нульовими, інакше процес (33) можна 
обернути без жодних змін у стані системи та термостату, а це суперечить 
припущенню щодо його нерівноважності. Вони не можуть бути також 
позитивними, інакше в цикловому процесі, складеному з (32,33) ми 
отримували б надлишкову роботу (права частина рівняння) лише за рахунок 
отримання теплоти (ліва частина рівняння (34)) від нагрівача без жодної 
компенсації, тобто передачі певної кількості теплоти холодильнику, що 
заборонено другим законом термодинаміки. Отже, обидві частини (34) 
від’ємні, негативні: 

0
~

;0~  AAqq     (35) 

Звідси виникає, що: 

qTdSq ~      (36) 

Отже, рівняння Клаузіуса (4) переходить у нерівність для нерівноважних 
процесів: 
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    (37) 

З виразів (37) можна вивести, що під час нерівноважного адіабатного 
процесу ( 0~ q ) ентропія зростає 0dS  і 12 SS  , у той час як під час 

рівноважного адіабатного процесу ( 0q ) вона є незмінною: 0dS  і 

21 SS  . Обидва твердження можна поєднати у виразі закону зростання 
ентропії для адіабатних систем: 

0dS     (38) 

В якому знак рівності стосується рівноважних, а знак нерівності – 
нерівноважних процесів в адіабатних системах. Вираз (38) є наслідком і 
однією з форм другого закону термодинаміки. Фізичний зміст (38) полягає у 
тому, що шляхом нерівноважного адіабатного процесу система може перейти 
лише в стан з більшою ентропією.  

Для циклового процесу з (37) отримуємо формулу Клаузіуса: 

0 T

q
   (38) 
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В якій знак рівності стосується лише рівноважних процесів, і яка є 
формулюванням другого закону термодинаміки для циклових процесів. 

Основне рівняння-нерівність термодинаміки можна тепер записати у вигляді 
єдиному для рівноважних і нерівноважних процесів для замкненої системи: 


i

iiddUTdS    (39) 

Де знак рівності стосується лише рівноважних процесів. 

 

Термодинаміка: лекція № 3  

Цикл Карно. 

Третій закон (начало) термодинаміки. Хімічна спорідненість. 
Формулювання третього начала термодинаміки.  

Недосяжність абсолютного нуля та інші наслідки з третього закону 
термодинаміки. Виродження ідеального газу. 

Методи термодинаміки. Метод циклів.  

Метод термодинамічних потенціалів. Рівняння Гіббса-Гельмгольца.  

Термодинамічні потенціали систем із змінним числом частинок. Хімічний 
потенціал. Недоліки термодинамічного методу опису процесів. 
 
 
 

 Цикл Карно 

Як вже було відмічено закони 
термодинаміки виникли з потреб теорії 
теплових машин. Схематична будова таких 
машин, які мають три обов’язкові 
частини, показана на рисункові: 

 Нагрівач, який надає робочому  тілу 
певну кількість теплоти 1Q ; 

 Холодильник, який приймає від 
робочого тіла певну кількість теплоти 

2Q  (компенсацію); 

 Робоче тіло яке в ході циклічного процесу перетворює в роботу певну 
частину тепла: 21 QQA  ; 

Цикл Карно є сукупністю чотирьох рівноважних процесів, показаних на 
графіку в координатах «ентропія-температура». Два з цих процесів (процес 

ba   та процес dc  ) є, як видно з графіку, ізотермічними. Два інших 
процеси ( adcb  , ) є  ізоентропійними ( 0dS ), отже й адіабатними 

( 0q ). 

Цикл починається в точці a , і в ході ізотермічного процесу ba  , який 
відбувається при температурі нагрівача ba TTT 1  робочому тілу 

21 qqA 

 
 

1q

2q
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передається певна кількість теплоти 1Q  . Робоче тіло розширюється 

ab VV ( ), виконуючи певну позитивну роботу. Ентропія при цьому зростає 

від aS  до bS .  

У точці b робоче тіло від’єднують від нагрівача і термічно ізолюють. У 
процесі cb   без втрат тепла і зміни ентропії робоче тіло продовжує 
розширюватися bc VV ( )  і зменшує свою температуру до температури 

dc TTT 2  холодильника, виконуючи позитивну роботу. 

У точці c  робоче тіло під’єднують до холодильника, якому воно 
ізотермічно передає деяку кількість тепла 2Q , причому над тілом 
виконується певна від’ємна робота, за рахунок якої зменшується ентропія 

( ad SS  ), і робоче тіло стискається ( cd VV  ). 

У точці d  тіло від’єднують від холодильника і 
адіабатно дотискають до початкового об’єму da VV  , 
здійснюючи над ним певну від’ємну роботу при сталій 
ентропії. Далі цикл може повторюватися необмежену 
кількість разів. 

Зауважимо, що цикл Карно є рівноважним, оскільки 
складається лише з рівноважних процесів. Тому для 
зміни ентропії маємо: 
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1

1    T
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d
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
    (1) 

Звідки неважко отримати: 

1

2

1

2

T

T

Q

Q
      (1) 

Таким чином вираз для коефіцієнта корисної дії машини, яка працює за 
циклом Карно отримує вигляд: 

1

21
T

T
     (3) 

Як видно з (3), ефективність (коефіцієнт  ) машини Карно не залежить 
від природи робочого тіла, а лише від температур нагрівача та 
холодильника. Це твердження і є першою теоремою Карно.  

З формули (42) видно також, що вплив температур 

21,TT  на коефіцієнт корисної дії неоднаковий. 
Дійсно: 
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Саді Карно 
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Таким чином зміни температури 

холодильника значно сильніше ( у 
2

1

T

T
 раз) 

відбиваються на ефективності теплових 
машин. Залежність коефіцієнта корисної 
дії машини, яка працює за циклом Карно, 
як функції від двох температур: 
нагрівача ( ]1[T ) та холодильника ( ]2[T ) 
показана на рисункові. 

Втім цикл Карно з температурою 02 T  
неможливо здійснити, оскільки при такій 
температурі цикл Карно вироджується (дві 
адіабати циклу «зливаються» в одну і 

площа циклу, як і його робота, обертається в нуль).  

Якщо реальна теплова машина здійснює певний необоротний цикл, отримуючи 
таку саму кількість тепла від нагрівача 1q , що і машина Карно, то робота 
такого циклу є меншою від роботи рівноважного циклу Карно.  Отже, 
«коефіцієнт корисної дії довільного нерівноважного циклу завжди менший 
від коефіцієнту корисної дії рівноважного циклу». Це твердження отримало 
назву другої теореми Карно.  

 

 Третій закон (начало) термодинаміки. Хімічна спорідненість. 
Формулювання третього начала термодинаміки.  

Третій закон термодинаміки сформулював на початку ХХ 
сторіччя Вальтер Нернст, тому цей закон інколи ще 
називається тепловою теоремою Нернста. Нернст 
цікавився хімічною спорідненістю речовин – величиною, 
яка характеризує здатність сполук та елементів 
хімічно реагувати поміж собою. Ця величина у хімічній 
термодинаміці визначається роботою A відповідної 
хімічної реакції. 

Перший і другий закон термодинаміки не дозволяли 
визначити величину хімічної спорідненості (роботу 
реакції). Нернст здійснив широкі експериментальні 
дослідження при низьких температурах. Як результат і 

узагальнення цих досліджень було сформульована теплова теорема Нернста, 
яка у подальшому отримала назву і ранг третього закону термодинаміки. 

Одне з формулювань цієї теореми виглядає так: «Ентропія будь-якої 
рівноважної системи припиняє залежати від термодинамічних параметрів 
стану системи і прямує до однакової, універсальної для всіх 
термодинамічних систем величини 0S , з наближенням температури до 

абсолютного нуля»: 

00))(lim( STS T      (5) 

Універсальна константа 0S , оскільки вона є однаковою для всіх 
термодинамічних систем, фізичного змісту не має. Через що її завжди можна 
покласти нульовою, просто змінюючи точку відліку ентропії: 00 S . 

Незалежність ентропії від термодинамічних параметрів біля абсолютного 
нуля температури, математично записується так: 

Вальтер Нернст 
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0lim
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S


    (6) 

якщо   - будь-який параметр термодинамічної системи, відмінний від 
температури: T . 

Разом з нульовим, першим та другим законами термодинаміки третій закон 
термодинаміки складає систему постулатів3 термодинаміки.  

Найпростіше формулювання третього закону термодинаміки полягає у 
твердженні, що ентропія будь-якої рівноважної термодинамічної системи при 
абсолютному нулі температури є нульовою. 

У випадках нерівновжних термодинамічних систем третій закон 
термодинаміки, зрозуміло, непридатний.   

 

 Недосяжність абсолютного нуля та інші наслідки з третього закону 
термодинаміки. Виродження ідеального газу 

Існують речовини (деякі сплави, кристали, гліцерин, тверді гази NOCO,  

тощо)для яких 0)lim( 0 TS , що нібито порушує тертій закон термодинаміки. 
Втім детальніші дослідження показують, що у всіх цих випадках йдеться про 
довготривалі нерівноважні (або метастабільні) стани цих речовин, які при 
низьких температурах можуть існувати (бути «замороженими») днями, 
тижнями, або навіть роками. Якщо дослідження проводилися з тими ж 
субстанціями довший час, який дозволяв релаксацію системи до рівноважного 
стану, третій закон термодинаміки (5,6) завжди виконувався. 

Розглянемо деякі наслідки з третього закону термодинаміки. Зокрема з 
цього закону постає судження щодо недосяжності абсолютного нуля 
температури. Дійсно, охолодження термодинамічної системи можна уявляти 
собі як послідовність двох процесів. По-перше, процесу адіабатного 
розширення системи, під час якого зменшується як внутрішня енергія, яка 
витрачається на роботу системи з розширення, так і температура системи. 
По-друге, процесу ізотермічного стискання, під час якого без зміни 
досягнутої температури ентропія системи зменшується.  

Відповідно до третього закону термодинаміки (див.(6)), з наближенням до 
температури абсолютного нуля, як температура, так і ентропія все менше і 
менше змінюються під час таких послідовних розширень-стискань. Отже, стан 
з 0S  є недосяжним  за кінцеву кількість зазначених процесів. Звідси з 
(5) недосяжною є також і температура абсолютного нуля.  

Принцип недосяжності абсолютного НУДЯ, який є наслідком третього закону 
термодинаміки, можна сформулювати у вигляді: «Неможливо за рахунок 
термодинамічних процесів, нехай як завгодно ідеалізованих, довести будь-
яку систему до температури абсолютного нуля внаслідок кількісно обмеженої 
послідовності дій. Система здійснює лише асимптотичне наближення до 
нульової температури як завгодно близько». 

Саме у вигляді принципу недосяжності абсолютного нуля, який є 
еквівалентом4 третього закону термодинаміки, і сформулював свою теплову 
теорему сам Нернст, який не любив і ніколи не вживав поняття ентропії. 
Втім і досі у деяких джерелах, саме принцип недосяжності нульової 
температури називають тертім законом термодинаміки. 

                                                 
3 Постулат - твердження, яке приймається без доказів, проте не є настільки 
очевидними як аксіома. 
4 У тому сенсі, що наслідком  цього принципу є закон у формі (1,2), і навпаки.  
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Термічний коефіцієнт розширення 
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1 як і взагалі будь-які термодинамічні коефіцієнти, котрі 

пропорційні похідним від термодинамічних параметрів типу 
TT 





,


 , згідно 

з третім законом повинні наближатися до нуля, якщо 0T . 

Покажемо це для похідних типу 
T

. Додамо до обох частин основного 

рівняння термодинаміки: 

TdSdU    (7) 

диференціал )( TSd  : 

 SdTTSUd )(    (8) 

Оскільки ліва частина є повним диференціалом, то повним диференціалом є 
також і права частина. Звідси 
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Згідно з (6) ліва частина рівняння (9) прямує до нуля з наближенням 
температури до нульової, отже: 
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Ці висновки з третього закону термодинаміки були підтверджені 
експериментально. 

Третій закон термодинаміки значно спростив обчислення ентропії, для 
знайдення якої достатньо знати лише залежність теплоємностіей від 
температури потребуючи навіть термічного рівняння стану. Дійсно з 
визначень теплоємностей маємо: 
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Звідси для ентропії маємо інтегральні формули: 
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Отже, задача обчислення ентропії зведена до обчислення температурних 
залежностей теплоємностей речовин. Згідно з тертім законом ентропія на 
нижній і верхній межі інтегралів (12) є скінченою, тому інтеграли 
сходяться. Математично це можливо лише за умови, що теплоємності поблизу 

від нуля температур залежать від температури як nT , тобто nTC ~ , причому 
0n . За таких умов: 0,0  PV CC  при 0T . 

Вираз для ентропії кіломоля ідеального газу, отриманий у попередній 
лекції з припущеннями незалежності теплоємності від температури і з 
використанням рівняння стану Мендєлєєва-Клапейрона: 
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)ln(ln0
A

V N

V
RTCSS      (13) 

дещо не відповідає третьому закону термодинаміки у двох аспектах. По-
перше, зміна ентропії в ізотермічному процесі:  

  )ln(
1

2

V

V
RS T       (14) 

не прямує до нуля нулю при 0T . По-друге, другий чинник у (13) не 
прямує до нуля за умови 0T , і навпаки, )ln(T .  

Ці протиріччя показують, що при низьких температурах ідеальний газ не 
підкоряється рівнянню стану Мендєлєєва-Клапейрона. Такі відхилення 
поведінки ідеального газу від класичних газових законів мають назву 
виродження ідеального газу.  

Отже, третій закон термодинаміки передбачає виродження ідеального газу 
при низьких температурах.  

    

 Методи термодинаміки. Метод циклів.  

Головними методами термодинаміки є метод циклів та метод термодинамічних 
потенціалів. Обидва методи ґрунтуються на законах термодинаміки, 
викладених у попередніх лекціях. 

Зміст методу циклів (або методу кругових процесів) полягає у тому, що для 
встановлення законів різних термодинамічних явищ розглядається спеціально 
підібраний оборотний термодинамічний цикл, до якого застосовують перший 
закон термодинаміки: 

 qA      (1) 

Та другий закон термодинаміки: 

  0
T

q
     (2) 

Перше з цих рівнянь стверджує, що робота циклу дорівнює цикловому 
інтегралу від кількості теплоти. Друге – стверджує, що зміна ентропії 
системи за цикл дорівнює нулю. 

У більшості випадків термодинамічну систему 
уявно змушують здійснити цикл Карно. Тоді 
отриманий з рівняння (1) вираз для коефіцієнта 
корисного дії циклу прирівнюють до коефіцієнта 
корисної дії циклу Карно, користуючись його 
першою теоремою стосовно незалежності цього 
коефіцієнту від природи робочого тіла. 

Проілюструємо цей метод на прикладі вивчення 
залежності поверхневого натягу рідини від 
температури. Розглянемо плівку рідини на 
дротяній рамці. Змусимо цю плівку здійснити 

цикл Карно. Цей цикл зобразимо на площині координат ( , ) – де   - 
поверхня плівки, а   - поверхневий натяг (див. рисунок). 

Припустимо, що цикл починається в точці 1 з параметрів  ,1 . Далі 

ізотермічно, при температурі T  розтягатимемо плівку до точки 2 з 
параметрами  ,2 . Поверхневий натяг при цьому не змінюється (лінія 1-2 
є горизонтальною), але плівка рідини під час розтягання охолоджується, 

d  

T  

dTT   4 3 

2 1 

2  1    

  
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тому для підтримання ізотермічності в ході процесу 1-
2 до плівки підводять певну кількість тепла 1q  .  

Далі плівка теплоізолюється і вже адіабатично, без 
теплообміну ( 0q ), розтягається в процесі 2-3. При 
цьому поверхневий натяг збільшується до величини 

 d , а температура падає до величини dTT  , як це 
видно з графіку. 

Ізотермічний процес 3-4 стискання плівки відбувається 
при температурі dTT   і з відводом деякого тепла 2q  
. Нарешті, в процесі 4-1 плівка адіабатно 
дотискається до відправних параметрів із збільшенням 
температури на dT  і зменшенням поверхневого натягу 

на d . 

Таким чином робочим тілом нашого уявного циклу Карно була плівка рідини. 
Робота циклу дорівнює його площі і визначається з першого закону 
термодинаміки (1) як: 

21 qqA    (3) 

Ця робота є від’ємною, адже вона здійснювалася над плівкою(цикл 
відбувався у напрямі проти годинникової стрілки, тобто був зворотним 
циклом Карно). Площу малого криволінійного паралелограму 1-2-3-4, отже й 
роботу циклу, можна визначити ще й так: 

  012  dA     (4) 

За визначенням, коефіцієнт корисної дії є відношенням роботи до 
отриманого тепла: 

 
1

12

q

d 
       (5) 

З іншого боку він дорівнює коефіцієнту корисної дії здійсненого циклу 
Карно: 

T

dT

T

dTTT





)(   (6) 

Прирівнюючи вирази (5) та (6) можемо отримати: 

 12

1













 T

q

T


   (7) 

Враховуючи, що r
q


 12

 - питомій теплоті ізотермічного утворення 

одиниці площі плівки, формулу (7) представимо у вигляді: 

T

r

T














           (8) 

Отже, методом циклів нами встановлено, що поверхневий натяг з 
температурою зменшується (похідна від’ємна), а швидкість такого зменшення 
обернено пропорційна температурі. 

 Метод термодинамічних потенціалів. Рівняння Гіббса-Гельмгольца.  

Метод термодинамічних потенціалів, або метод характеристичних функцій, 
був розвинений видатним американським вченим Д. Гіббсом. Фундаментом 
цього методу є основне рівняння термодинаміки: 

Джозайя Віллард 
Гіббс 
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j
j

ji
i

i dNdUTdS        (9) 

Залежно від набору змінних, яким характеризують рівноважну систему, її 
можна описати так званими характеристичними  термодинамічними функціями 
(термодинамічними потенціалами). При цьому зазначений вище набір змінних 
називають природними незалежними змінними системи. 

Змінні, які можна утримувати постійними в термодинамічних процесах ТД-
системи5 і є природними незалежними змінними певного термодинамічного 
потенціалу. Природні змінні важливі не тільки з вище згаданої причини. 
Через те що термодинамічний потенціал може бути визначений як функція 
його природних змінних, всі термодинамічні властивості ТД-системи можна 
знайти узяттям часткових похідних цього потенціалу по його природних 
змінних, і це вірно лише щодо набору природних незалежних змінних, але не 
для жодної іншої комбінації змінних. 

Термодинамічні потенціали, по-перше, є функціями стану системи, отже, їх 
зміна не залежить від  того, яким шляхом система змінювала свій стан. По-
друге, термодинамічні потенціали є екстенсивними (адитивними) параметрами 
ТД-системи, тобто кожен ТД-потенціал для системи в цілому є сумою 
потенціалів всіх її підсистем.  

Термодинамічні 
потенціали (назва)  

Незалежні 
природні змінні 

Повні диференціали 

U  

Внутрішня енергія 
jNVS ,,  

j
jjdNPdVTdSdU   

PVUH   

Ентальпія 
jNPS ,,  j

j
jdNVdPTdSdH    

TSUF   

Вільна енергія 
jNVT ,,  j

j
jdNPdVSdTdF    

TSPVUG   

Потенціал Гіббса 
jNPT ,,  j

j
jdNVdPSdTdG    

 

 

 

 

 

                                                 
5 Термодинамічна система (ТД-система) 
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Таблиця дає опис чотирьох найбільш уживаних термодинамічних потенціалів з 
вказівкою їх природних незалежних змінних та форми повних диференціалів. 
Мнемонічна схема для швидшого вивчення цієї сукупності потенціалів 
наведена  далі на рисункові. Чотири потенціали пов’язані між собою через 
( TS ) — енергію отриману від оточення, та PV  — енергію розширення 
системи.   

В загальному вигляді повний диференціал деякого 
термодинамічного потенціалу має наступну форму: 

... ZdzYdYXdxdL     (10) 

Тут ,...,, ZYX - узагальнені термодинамічні сили є 
функціями змінних ,...,, zyx . Перетворенням Лєжандра 

називають наступне перетворення потенціалу L  та 
набору його незалежних змінних: 

    



,...,,,...,,

;

zyXzyx

XxLLL




    (11) 

За умов (11) для диференціалу 
нового потенціалу маємо: 

xdXXdxdLZdzYdyxdXLd  ...    
(12) 

Неважко побачити, що решту 
потенціалів таблиці можна отримати 
з внутрішньої енергії U  послідовно 
здійснюючи одне, або два 
перетворення Лєжандра (11,12), в 
якому ),,( GHFL   і ),( PVTSXx  . 

Виходячи з визначення 
термодинамічних потенціалів, можемо 
визначати термодинамічні параметри 
системи шляхом взяття часткових 
похідних від потенціалів. Зокрема, 
з виразів третього стовпчика 
таблиці легко отримати: 
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 (16) 

Існує мнемонічна діаграма, заснована на абревіатурі англійського речення 
«Good Physicists Have Study Under Very Fine Teachers», яка допомагає 
виписати зазначені вище рівняння. Розставимо перші літери цих слів за 
годинниковою стрілкою, почергово у секторах та кутах квадрату, починаючи 
з лівого трикутного сектору квадрату, так як показано на рисункові. 

S P 

T 

G 

V 

H 

U 

F 
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Похідну від будь-якого з чотирьох потенціалів ( FUHG ,,, ) по одній з 
природних змінних, які розташовані по кутах відповідного трикутного 
сектору, можна визначити, рухаючись по діагоналям квадрату.  

Знак похідної залежить від напряму руху (за стрілками,тобто згори до 
низу, – позитивний, проти стрілок, або знизу догори, – негативний). 
Діаграма також дозволяє запам’ятати пари природних змінних для кожного з 
чотирьох ТД-потенціалів6: зокрема для потенціалу G  це пара ( PT , ), для 

H  відповідно ( SP, ) і так далі. Цю діаграму інколи називають діаграмою 
Радушкевича. 

З рівнянь (13-16) можна отримати набір перехресних співвідношень, 
наприклад: 

S
T

F

T

G

jj NVNP


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





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





,,

  (17) 

Інші співвідношення випливають з так званої теореми Максвела, яка 
стверджує, що через те, що диференціал термодинамічного потенціалу 

... YdyXdxdL  є повним диференціалом виконуються так звані 
співвідношення Максвела поміж частковими похідними: 

x

Y

y

X








    (18) 

Дійсно, затим що 
y

L
Y

x

L
X








 ,  вираз (18) є просто відомою у математиці 

тотожністю: 
xy

L

yx

L







 22

. 

З (18) можна отримати (див. перший рядок третього стовпчика таблиці)низку 
рівнянь Максвела типу такого: 

jj NVNS S
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


  (19) 

Різні термодинамічні потенціали пов’язані поміж собою. Дійсно, наприклад, 
з рівняння: 

TSHG            (20) 

а також діаграми Радушкевича, можемо отримати зв’язки поміж потенціалами 
вигляду: 

                                                 
6 Щодо назв потенціалів: термін «енергія» дослівно означає  «вміст роботи» і 
зустрічається ще в трудах Аристотеля, проте поняття внутрішньої енергії U , як 
роботи, необхідної для створення ТД-системи, ввели у термодинаміку  Томсон і 
Клаузіус. Термін «ентальпія», H , буквально означає «вміст тепла» і упроваджений 
Каммерлінг-Оннесом. Назва «вільна енергія», F , запропонована Гельмгольцом, бо 
визначає ту частину внутрішньої енергії, яка може бути перетворена в роботу в 
рівноважному ізотермічному процесі: AdF  . Потенціал Гіббса, G , упроваджений 
ним для ізобаричних процесів (за умови сталого тиску). 



38 
 




















































NV

NP

NP

T

F
TFU

T

G
TGH

S

H
SHG

,

,

,

    (21) 

Рівняння типу (21) мають назву рівнянь Гіббса-Гельмгольца. 

 

 Термодинамічні потенціали систем із змінним числом частинок. 
Хімічний потенціал. Недоліки термодинамічного методу опису 
процесів. 

Термодинамічні потенціали міняються зі зміною числа частинок в системі, 
як це видно з наведеної вище таблиці. Зміна кількості частинок j -го 
сорту в системі може спонукатися різними причинами: хімічними реакціями, 
ядерними реакціями, фазовими перетвореннями тощо.   

Якщо індекс ,...2,1j  нумерує сорти частинок, з яких складається система, 
то похідні від ТД-потенціалів по кількості частинок j -го сорту 
визначають так звані хімічні потенціали: 
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За фізичним змістом хімічний потенціал можна розглядати як середнє 
значення ТД-потенціалу у розрахунку на одну частинку j -го сорту, яку 
вона вносить (чи виносить) у систему. З іншого боку – хімічні потенціали 
є похідними від ТД-потенціалів по кількості частинок, але вони, залежно 
від потенціалу, є функціями різних наборів природних незалежних змінних 
системи. 

Хімічні потенціали є інтенсивними, не адитивними, змінними (як, 
наприклад, температура, або густина системи) і як такі не залежать від 
кількості частинок (або речовини) в системі. 

Розглядаючи хімічні реакції як один з можливих випадків реалізації систем 
зі змінною кількістю частинок корисно розглянути ті умови, в яких можуть 
протікати хімічні реакції і відповідні зміни ТД-потенціалів, якими їх 
зручно описувати (див. таблицю)  

Умови 
constV   

ізохоричні 

constP   

ізобаричні 

constS   

адіабатичні 
U  H  

constT   

ізотермічні 
F  G  

 

Позаяк більшість хімічних реакцій відбуваються за ізотермічно-ізобаричних 
умов (   constTP , ), зміни потенціалу Гіббса, G , - найчастіше уживана 
характеристична термодинамічна функція у хімічній термодинаміці.  
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Розглянуті методи термодинаміки мають як свої переваги, так і власні 
недоліки.  

Зокрема, метод циклів принципово може бути застосований до будь-якої 
термодинамічної проблеми, або задачі, а деякі авторитетні дослідники 
(Карно, Нернст, Клаузіус)  користалися лише цим методом.  Втім він має 
суттєвий недолік: для кожної задачі необхідно підбирати відповідний 
термодинамічний цикл, і успішність підбору визначає успіх у рішенні 
проблеми. Критеріїв же такого підбору, на жаль, не існує. Найчастіше 
застосовується цикл Карно, проте такий вибір неможна вважати 
універсальним.  

Метод термодинамічних характеристичних функцій (або термодинамічних 
потенціалів) більш універсальний і потребує лише визначення набору 
природних незалежних змінних системи, що також не завжди очевидно, але в 
принципі можливо. Гіршим є те, що самі термодинамічні потенціали у межах 
термодинаміки, тобто з її головних законів знайти неможливо.  Втім у 
сучасній термодинаміці цей метод використовується значно частіше методу 
циклів, завдяки можливості знаходження зв’язків поміж термодинамічними 
параметрами типу рівнянь (13-16) та(19). 

  

Термодинаміка: лекція № 4  

Умови рівноваги і стійкості термодинамічних систем. Загальні умови 
термодинамічної рівноваги і стійкості. Стійка рівновага адіабатно 
ізольованої системи. Принцип максимуму ентропії. 

Критерії стійкості ізотермічних систем.  

Принцип Ла Шательє-Брауна. 
 

 Умови рівноваги і стійкості термодинамічних систем. Загальні умови 
термодинамічної рівноваги і стійкості. Стійка рівновага адіабатної 
ізольованої системи. 

Стан термодинамічної системи визначається її температурою T , а також 
набором певних зовнішніх параметрів    ,...,...,, 21 ii   , які характеризують 
взаємодію системи з позасистемними тілами. У стані термодинамічної 

рівноваги всі рівноважні внутрішні параметри  0

n
  є функціями температури 

і зовнішніх параметрів:  

 ),(00
iT

nn
     (1) 

Тому в рівноважному стані системи набір внутрішніх параметрів не 
потрібний  для її опису, якщо тільки задані температура та набір 
зовнішніх параметрів. 

Ситуація змінюється у випадках, коли система виведена зі стану 
термодинамічної рівноваги. У таких станах внутрішні параметри не є 
функціями лише температури та зовнішніх параметрів, іншими словами умова 
(1) більше не має місця. Тому нерівноважні стани потребують для свого 
опису додаткових незалежних параметрів (зокрема внутрішніх) значення яких 

відмінні від рівноважних:    0
nn    . 

Розглядаємо відхід системи від рівноважного стану як результат відхилення 

її внутрішніх параметрів  n  від своїх рівноважних значень  0
n  . Тоді, 
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користуючись основним рівнянням-нерівністю термодинаміки (для замкненої 
системи): 

i
i

idUTdS     (2) 

можна знайти загальні умови термодинамічної рівноваги та стійкості 
системи. 

Припустимо, що система характеризується обмеженим набором внутрішніх 
параметрів:  mn ,...,2,1 . Ці параметри, в загальному випадку мають певні 
зв’язки між собою: 

  0( nsf      (3) 

Причому кількість таких рівнянь зв’язку: mrs  ,...,2,1  менше, або дорівнює 
кількості параметрів. Сукупність всіх віртуальних (можливих) відхилень 

параметрів 0
nnn    від рівноважних значень, за умови накладених на 

них зв’язків (3), повинна підлягати умовам д’Аламбера: 
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Розглянемо спочатку адіабатно ізольовану термодинамічну систему, в якій 
фіксованими (незмінними) є внутрішня енергія, об’єм і кількість частинок: 

  

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
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0
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i

constNVU


    (5) 

За такого набору природних незалежних змінних термодинамічним потенціалом 
системи є ентропія ),( VUS . Нерівність (2) для такої системи в її 
нерівноважному стані має такий вигляд: 

0 PdVdUTdS   (6) 

Іншими словами, через те що 0T , ентропія ізольованої системи за умови 
нерівноважного процесу лише зростає: 

0dS    (7) 

Коли такі процеси з часом припиняться і система повернеться у 
термодинамічно рівноважний стан, ентропія повинна сягнути свого 
максимуму. Отже, загальною умовою стійкої рівноваги ізольованої системи є 
умова максимальності її ентропії: maxSS  , що математично можна записати 
у вигляді двох вимог: 
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 (8) 

Рівність нулю першої варіації ентропії забезпечує умову екстремуму 
(рівноваги), а від’ємність другої гарантує, що такий екстремум є саме 
максимумом (стійкість рівноваги). При цьому система рівнянь (8) повинна 
розглядатися спільно з системою рівнянь (4), якщо на параметри накладені 
зв’язки (3).  
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Вимога максимальності ентропії для стійкої рівноваги адіабатно 
ізольованої системи відома також під назвою принципу максимальної 
ентропії. 

 

 Критерії стійкості ізотермічних систем.  

Розглянемо тепер дещо інші, відмінні від умов (5) ізотермічні умови для 
системи в термостаті: 
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
    (9) 

Діаграма Радушкевича (див. попередню лекцію) вказує на те, що за таких 
умов для замкненої системи термодинамічним потенціалом є вільна енергія: 

TSUVTF ),( . Запишемо нерівність (2) з використанням виразу для 
вільної енергії: 

PdVdUSdTdUdF     (10) 

Або в такому, більш упорядкованому, вигляді: 

0 PdVSdTdF          (11) 

Для системи, яка перебуває в термостаті ( 0dT ) і не здійснює зовнішньої 
роботи ( 0dV ), тобто ізотермічно-ізохоричної системи, вільна енергія 
зменшується під час нерівноважних процесів і сягає свого мінімуму в 
рівноважному стані. Звідси маємо умови стійкої рівноваги для такої 
системи у вигляді, аналогічнім умовам (8): 
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Неважко показати, що за умов ізотермічно-ізобаричної системи 
( constnPT ),,( ) аналогічні (12) умови треба записати для першої та другої 

варіацій ізотермічно-ізобаричного потенціалу Гіббса: TSPVUPTG ),( , 
який сягає мінімуму у рівноважних умовах. 

Умовою виконання рівнянь типу (8,12) э умова позитивності детермінантів 
які складені з коефіцієнтів квадратичних форм. Інакше кажучи вимагати 
виконання  
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де ,...),,,( HUGFL   рівнозначно вимозі виконання умови: 
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Причому позитивними мусять бути також всі головні мінори матриці (14), 
починаючи від першого порядку і до порядку m . Найпростішою і найпершою 
умовою виконання (14) є умова позитивності діагональних елементів матриці 
коефіцієнтів (як мінорів першого порядку): 
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З умов (15) можна отримати так звані термодинамічні нерівності. Для 
прикладу розглянемо ),( SPHL  . Тоді з діаграми Радушкевича маємо: 
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Звідки отримуємо згідно до (15) наступну термодинамічну нерівність: 
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Що означає розширення адіабатної системи за умови підвищення температури 
і навпаки. Тут S  - адіабатний коефіцієнт об’ємного теплового 
розширення.  

Якщо ),( VSUL  то аналогічним шляхом можемо отримати  

0; 



















VVV C

T

S

T
T

S

U
 (18) 

Більш складні нерівності можна отримати, розглядаючи мінори вищих 
порядків.  

 

 

 Принцип ле-Шательє-Брауна 

Якісне формулювання принципу ле-Шательє-Брауна э таким: «Якщо система 
перебуває під впливом зовнішніх факторів, які виводять її зі стану 
рівноваги, то у системі виникають реакції, спрямовані на послаблення цих 
зовнішніх факторів». 

Принцип був сформульований у 1884 році ле-Шательє на інтуїтивному рівні 
як термодинамічний аналог правилу Ленца для електромагнітної індукції, і 

обґрунтований у 1887 році Брауном. 

Цінність принципу полягає у тому, що він дозволяє 
передбачити напрями, в яких змінюються термодинамічні 
процеси під зовнішнім впливом. Розглянемо перший 
приклад застосування цього принципу, пов’язаний з 
системою двох тіл, зображеною на рисункові. 
Припустимо, що за рахунок зовнішнього фактору 
(скажімо, нагрівання променями) рівновага була 
порушена – температура верхнього тіла підвищилася на 

T . У такому разі в системі виникне реакція: тепло 
почне переходити в напрямі стрілки від верхнього тіла до нижнього. 
Наявність потоку тепла q  означає зменшення ентропії верхнього тіла: 

T

q
Supper

  . Через те що температура та ентропія пов’язані, причому:  

T+dT 

T 
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Для зміни температури верхнього тіла матимемо: 
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Другий приклад ілюструється іншим рисунком. У циліндр з газом під 
поршнем, який в стані рівноваги утримується на місці атмосферним тиском 
P , подають ззовні дещицю тепла q  через теплопровідні стінки. Рівновага 
порушується і в системі виникають дві реакції: перша (пряма реакція) 
полягає у підвищенні температури речовини від T  до dTT  , друга 
(непряма реакція) полягає у зміщенні поршня зі зміною тиску та об’єму 

газу. Зміна ентропії газу: 

T

q
dS


     (15) 

Якщо поршень зафіксувати, то в системі можлива 
лише пряма реакція, тоді зміна ентропії 
пов’язана зі зміною температури так: 

 
;

T

dTC
dS VV   (16) 

Звідки для ізохоричної змін температури при 
сталому об’ємі маємо: 

V
V C

q
dT


    (17) 

При сталому тискові, існують обидві реакції і аналогічно можна отримати 
вираз для ізобаричної зміни температури: 

P
P C

q
dT


    (18) 

Через те що VP CC   ізобаричне нагрівання є меншим: VP dTdT  . Отже, 
зміщення поршня послаблює вплив зовнішнього фактору. 

 

Термодинаміка: лекція № 5  

Застосування термодинаміки. Ефект Джоуля-Томсона. Зрідження 
реальних газів. Охолодження газу при оборотному адіабатичному 
розширенні.  

Термодинамічні функції діелектриків і магнетиків. Магнітне і ядерне 
охолодження.  

Термодинаміка випромінювання. 
 
 

Зміщення 

P 

dTTT   

δq  
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 Застосування термодинаміки. Ефект Джоуля-Томсона. Зрідження 
реальних газів. Охолодження газу при оборотному адіабатичному 
розширенні. 

Розглянемо теорію ефекту Джоуля-Томсона, який полягає у зміні температури 
реального газу під час необоротного адіабатного розширення. 

На рисункові зображено циліндричний адіабатний (ізольований від втрат 
тепла)детандер з двома рухомими поршнями і пористою перегородкою7 
(мембраною) поміж ними. Під дією поршня газ переганяють крізь мембрану з 
області високого тиску 21 PP   в область меншого тиску. Під час такого 

розширення з перепадом тиску 012  PPP  газ змінює свою температуру. 

Цей ефект при невеликих перепадах тиску ( 1
P

P ) називають 

диференціальним ефектом Джоуля-Томсона, а при більших перепадах – 
інтегральним ефектом Джоуля-Томсона.  

Розглянемо диференціальний ефект, який характеризується коефіцієнтом 
Джоуля-Томсона: 

P

T




     (1) 

Через те що процесс адіабатний, а втратами на тертя газу у мембрані можна 
знехтувати при малих швидкостях потоку, враховуючи також, що ліворуч від 
мембрани (ситуація А) робота здійснюється над газом (тобто негативна), а 
праворуч (ситуація В) – навпаки, газом (тобто позитивна),  маємо з 
першого закону термодинаміки: 

0221112  VPUVPUq    (2) 

Останнє рівняння можна переписати у вигляді: 

22221111 HVPUVPUH     (3) 

Іншими словами, процес Джоуля-Томсона є ізоентальпійним. Це дозволяє 
записати нульову зміну ентальпії у вигляді: 

0



















 T
T

H
P

P

H
H

PT

   (4) 

Звідси: 

PT T

H

P

H




















     (5) 

З виразів для диференціалів 
термодинамічних потенціалів: 

dTCVdPTdSdH P    (6) 

VdPSdTdG         (7) 

Отримуємо з (6) відповідні похідні: 

;; P
PTT

C
T

H

P

S
TV

P

H































  (8) 

А з (7) за співвідношеннями (теоремою) Максвелла: 

                                                 
7 Завдяки тертю під час проходження крізь пористу мембрану газ э однорідним по 
обидві сторони перегородки і його течія є ламінарною.   

1P   

11,VP  
 

2P   

22 ,VP  
 

A 

B 
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PT T

V

P

S




















     (9) 

Комбінуючи рівняння (5,8,9), можна одержати для диференціального 
коефіцієнту Джоуля-Томсона заключний вираз:  

P

P

C

VTVT

P

T 






)/(    (10) 

Застосуємо формулу (1) для ідеального газу з термічним рівнянням стану 
Мендєлєєва-Клапейрона (для одного кіломоля): 









P

T
RV        (11) 

Звідки: 

T

V

P

R

T

V

P











   (12) 

Отже, для ідеального газу 0 , тому й 0T  - температура ідеального 
газу в процесі Джоуля-Томсона не змінюється.  

Розглянемо далі реальний аз, який описується рівнянням ван-дер-Ваальса: 

  RTbV
V

a
P 






 

2
  (13) 

Де константи   ba,  описують відповідно виправлення на взаємодію поміж 

молекулами реального газу та на власний об’єм молекул. Константи  ba,  є 

різними для різних газів, і лише за умови   0, ba  рівняння (13) 
переходить в (11). 

Диференціюємо (13) по T  за умови constP  : 

R
T

V

V

a
PbV

T

V

V

a

PP





















 )()(
2

23
           (14) 

Вирішуючи (13) відносно похідної 
PT

V










 , і враховуючи рівняння(13), 

маємо для реального газу вираз: 

2
332

)(
2

)(

)(
2

bV
V

a
RT

bVR

bV
V

a

V

a
P

R

T

V

P 
















     (15) 

Вважатимемо реальний газ не надто густим і залишимо в (15) лише величини 
першого порядку відносно малих виправлень ba, . Тоді рівняння (15) 
спроститься до вигляду: 

 
RT

a
bV

RTV

a
bV

RTV

a
bV

T

V
T

P

2
)

2
1(

2
1
















  (16) 

Підставляючи (16), у вираз для диференціального коефіцієнту Джоуля-
Томсона, для реального газу отримуємо таку наближену формулу: 
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PC

b
RT

a

P

T






 







2

    (17) 

З якої можемо зробити декілька важливих висновків: 

 зміна температури T  реального газу під час необоротного 
адіабатного розширення (процесу Джоуля-Томсона) визначається його 
відхиленням від ідеальності:   0, ba ; 

 ефект Джоуля-Томсона для негустого реального газу визначається 
співвідношенням констант  ba, , кожна з яких здійснює на знак ефекту 
протилежний вплив; 

 якщо в реальному газі домінують сили взаємодії поміж  молекулами, 

отже b
RT

a


2
, то 0  і величини  PT  ,  мають однаковий знак. 

Оскільки 0P , то й 0T , —реальний газ охолоджуватиметься. 

 якщо сили взаємодії малі, тобто домінує виправлення на власний 

об’єм молекул, b
RT

a


2
, то 0T , — реальний газ нагрівається в 

процесі Джоуля-Томсона; 

 За деякої температури 
Rb

a
Tinv

2
  маємо 0)( invT  і реальний газ 

поводиться як ідеальний (зокрема 0T ). При температурі інверсії 
ефект Джоуля-Томсона вочевидь змінює знак: за умови нижчої 
температури, invTT  , газ охолоджується, а за вищої температури 

invTT  , навпаки, нагрівається в процесі Джоуля-Томсона. 

У більш загальному випадку температура інверсії визначається рівнянням: 

0









V
T

V
T

P

     (18) 

Яке виникає з (10), і визначає на площині  VT ,  певну лінію температур 
інверсії. 

Розглянемо тепер охолодження газу під час оборотного адіабатного процесу. 
Такий процес можливий в приладах, які називаються детандерами, в яких газ 
охолоджується, здійснюючи роботу розширення і пересуваючи поршень (або 
обертаючи турбіну) за рахунок адіабатного зменшення внутрішньої енергії. 

З умови адіабатності процесу ( 0q ) та першого закону термодинаміки 
випливає: 

0




























 dPV
P

H
dT

T

H
VdPdHPdVdU

TP

    (19) 

Звідки для зміни температури dT  маємо: 





























PP

S C

dP
V

P

H
dT    (20) 

З рівнянь (8,9) перший множник у (20) можна спростити: 
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



















PP

S C

dP

T

V
TdT  (21) 

Через те, що всі множники у (21) позитивні, окрім одного 0dP , то і 
знак зміни температури завжди від’ємний:  

0SdT     (22) 

Отже, будь-який газ охолоджується під час адіабатного розширення, 
незалежно від вигляду його рівняння стану. У цьому полягає принципова 
перевага такого способу охолодження від охолодження за рахунок 
необоротного ефекту Джоуля-Томсона. Проте останній процес значно простіше 
реалізувати технічно. 

 Термодинамічні функції діелектриків і магнетиків. Магнітне і ядерне 
охолодження.  

Термодинаміка діелектриків і магнетиків визначається не лише механічними 
силами, але також силами немеханічного походження. Основне рівняння 
термодинаміки включає в себе такі сили у вигляді добутку зміни зовнішніх 
параметрів ( d ) та спряжених до них узагальнених термодинамічних сил 
() добуток яких має розмірність енергії: 

dPdVdUTdS     (23) 

Для діелектриків у процесі поляризації (або переполяризації) зовнішнім 

параметром виступає напруженість зовнішнього електричного поля E

, а 

спряженою до нього, узагальненою термодинамічною силою вектор поляризації 

Π

 , причому елементарна робота немеханічних сил визначається скалярним 

добутком: 

 Ed,Π


A     (24) 

Для ізотропного діелектрика вектори поляризації та напруженості 
зовнішнього поля співпадають за напрямом і скалярний добуток (24) можна 
замінити в основному рівнянні термодинаміки (23) добутком модулів цих 
векторів: 

dEPdVdUTdS     (25) 

Для магнетиків відповідним зовнішнім параметром ‘ індукція зовнішнього 

магнітного поля B

, а узагальненою термодинамічною силою – вектор 

намагніченості J

. Відповідно основне термодинамічне рівняння для 

ізотропного магнетика можна записати у вигляді: 

JdBPdVdUTdS     (26) 

В адіабатичних умовах 0dS  рівняння (26), наприклад, отримує вигляд: 

JdBPdVdUS     (27) 

Для ізотропних парамагнетиків, наприклад : 

0
B

J       (28) 

Де )(T - безрозмірна, але температурно залежна магнітна сприйнятливість, 

а 7
0 104    Гн/м – магнітна стала. Згідно до закону Кюрі-Вейсса для 

парамагнетиків: 
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T
T

 )(    (29) 

де 0 const  константа Кюрі. 

З (28,29) маємо що: 









T

B
const

T

B
J

0


   (30) 

Отже, )(
2T

B
const

T

J

B











. Вираз для похідної зміни температури під час 

перемагнічування парамагнетиків можна отримати за формулою, аналогічною 
(21), просто заміняючи в ній: dBdP  , dJdV  : 

dB
TC

B
constdB

T

J

C

T
dT

BBB
S 



















    (31) 

Де 
3

1
~

T
CB  - теплоємність при сталому зовнішньому магнітному полі, яка 

при низьких температурах обернено пропорційна кубу температур (закон 
Дебая). 

Звідси видно, що при розмагнічуванні, коли 0dB , температура завжди 

знижується: 0
1

~
4


T
dT , причому обернено пропорційно четвертому ступеню 

температури, тобто тим сильніше, чим нижча початкова температура. Ефект 
зниження температури при адіабатному розмагнічуванні парамагнетиків 
(молекулярних, або ядерних) має назву магнітокалоричного ефекту. Шляхом 
використання такого ефекту сучасна фізика отримує наднизькі температури 

порядку мікрокельвинів ( K610~  ).   

Втім, за третім законом термодинаміки при наднизьких температурах як 
магнітна сприйнятливість, так і теплоємність перестають залежати від 
температури і магнітокалоричний ефект зникає. 

 

 Термодинаміка випромінювання. 

Розглядаючи випромінювання як ідеальний газ квантів електромагнітного 
поля (фотонів) одразу можна зрозуміти придатність термодинаміки до такого 
об’єкту. Універсальність законів термодинаміки полягає у тому, що вона 
придатна як до класичних, так і до квантових систем, як до речовини, так 
і до електромагнітного поля. 

Випромінювання, яке перебуває у термодинамічній рівновазі з термостатом, 
називають тепловим (або чорним) випромінюванням. Температура 
випромінювання в стані рівноваги дорівнює температурі оточення 
(термостату). Рівноважне випромінювання з точки зору термодинаміки є 
системою, яка характеризується температурю T , об’ємом V  і тиском P .  

Електродинаміка розглядає теплове випромінювання як сукупність 
електромагнітних хвиль в діапазоні частот ],0[  . Якщо  T,  - 

спектральна густина випромінювання, то    dT,  - питома енергія хвиль у 

діапазоні частот від   до  d . Тоді повна питома енергія (густина 
енергії) випромінювання є: 
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



0

),()(  dTTu    (32) 

Повна ж енергія випромінювання в об’ємі V , тобто внутрішня енергія 
системи, дорівнює: 

VTuTU  )()(    (33) 

Аналогічно, якщо    dTs ,  - питома ентропія в інтервалі частот, то повна 
ентропія є: 





0

)(),()( VTsdTsVTS     (34) 

Відповідно, нехай  dT ),(  - питома енергія, яка випромінюється тілом в 
інтервалі частот, тоді енергетична світність тіла: 

   dTVTR 



0

,)(         (35) 

В застосування до теплового випромінювання термодинаміка дозволяє 
отримати наступні результати: 

 Вираз для тиску випромінювання )(~ TuP ; 

 Закон Кірхгофа щодо незалежності відношення спектральної густини 
енергетичної світності тіла  T,  до коефіцієнту поглинання  Ta ,  

від природи випромінюючого тіла:     ),(,/, TfTaT   ; 

 Закон Стефана-Больцмана щодо залежності енергетичної світності тіла 

від температури   4~ TTR ; 

 Закон Віна стосовно пропорційної залежності частоти максимуму 
функції  T,  від температури T~max ; 

Втім детальніше до цих питань варто повернутися, вивчаючи статистичну 
фізику теплового випромінювання.  

 

 

Термодинаміка: лекція № 6  

Поняття фази. Умови рівноваги фаз в гетерогенних системах. Правило 
фаз Гіббса. 

Діаграми стану однокомпонентних систем. Лінії рівноваги фаз. Потрійні 
точки.  

Класифікація фазових переходів. Фазові перетворення першого роду та 
рівняння Клапейрона-Клаузіуса.  
 

 Фазові переходи і критичні явища. Класифікація фазових переходів. 

Поняття фази є ключовим у термодинаміці неоднорідних (гетерогенних) 
систем. Фазою в термодинаміці називають однорідну (гомогенну) частину 
неоднорідної (гетерогенної) системи, яка відділена від решти системи 
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чіткою поверхнею розділу  (границею). На рисункові зображена типова 
гетерогенна система, в якій можна виділити окремі фази: рідка фаза 
(імовірно кава), парова фаза, тверда фаза (імовірно порцеляна), поміж 
якими існують чіткі границі.  

Кількість компонентів у гетерогенній системі k  дорівнює кількості різних 
сортів частинок s  мінус кількість хімічних реакцій поміж ними, які 
здатні відбутися в цій системі до кінця: 

rsk      (1) 

Фаза є однорідною в тому сенсі, що всі макропараметри, які її 
характеризують, не залежать від координат у межах фази. Втім ці параметри 
потерпають стрибкоподібну зміну на кордоні фази, при переході від однієї 
фази до іншої. З цієї точки зору розчин кави у воді (або спирту у воді) є 
однією фазою, хоча й не однокомпонентною, оскільки хімічних реакцій поміж 
кавою та водою (або поміж спиртом та водою) під час розчину не 
відбувається. У той же час вода з кригою є двофазною, хоча й 
однокомпонентною системою. 

Розглянемо термодинамічну рівновагу в гетерогенній системі, яка 
складається з ni ,...,2,1  фаз та kj ,...,2,1  компонентів. Параметри, які 
стосуються j го компонента в i й фазі помічатимемо двома індексами, 

верхнім для фази, і нижнім для компонента: наприклад, i
j

i
jc ,  - відповідно 

концентрація та хімічний потенціал j го компонента в i й фазі.    

Почнемо з випадку однокомпонентної ( )1k , але багатофазної 1( n ) 
системи. Умови рівноваги поміж фазами можна записати у вигляді трьох 
вимог: 

 Термічна рівновага: nTTT  ...21  (2); 

 Механічна рівновага: nPPP  ...21  (3); 

 Матеріальна рівновага: ),(...),(),( 21 PTPTPT n   (4); 

Розглядаючи двофазну однокомпонентну систему «кава-пар» мусимо 
враховувати всі три умови рівноваги, включно з третьою, оскільки існують 

переходи частинок поміж фазами: рідкою та паровою: 2
1

1
1   , або 

загальніше – матеріальна рівновага існує поміж різними фазами для одного 
і того ж компонента. 

Розглядаючи ж двофазну і двокомпонентну систему «кава-склянка», третю 
умову рівноваги розглядати не мусимо, адже обидві фази вважаємо 

замкненими щодо переходу частинок поміж фазами: 21
21   , або загальніше - 

матеріальної рівноваги поміж різними компонентами не існує. 

З викладеного вище можна зробити загальний висновок: термодинамічна 
рівновага гетерогенної багатокомпонентної системи зумовлюється рівністю 
температур, тисків, а також хімічних потенціалів для кожного компонента в 
усіх фазах. Математичні умови такої рівноваги описуються системою рівнянь 
вигляду: 
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    (5) 

Отримані умови рівноваги (5) дозволяють встановити кількість 
багатокомпонентних фаз, яка може перебувати в рівновазі в складі системи, 
або кількість незалежних змінних, які характеризують гетерогенну систему, 
і які можна змінювати не порушуючи при цьому стану рівноваги. Перш за все 
встановимо, що сум відносних а концентрацій в кожній фазі мусить 
дорівнювати одиниці: 

1
1




k

j

i
jc     (6)   

Отже, кількість незалежних концентрацій, якими характеризується певна 
фаза, дорівнює ( 1k ), оскільки одна з концентрацій визначається рештою з 
рівняння (6). 

Припустимо, що температура і тиск однакові в усій системі: ( PT , ). Згідно 
(5) хімічні потенціали визначатимуться системою рівнянь вигляду: 

  









kj

n
jjj

,...,2,1

...21 
    (7) 

Загалом маємо )1( nk  таких рівнянь в системі (7). Ці рівняння пов’язують 

)1(2  kn  змінних: температуру, тиск + )1( kn  концентрацію компонентів у 
n  фазах.  

Умовою існування рішень системи (7) є нерівність: 

)1(2)1(  knnk     (8) 

(кількість рівнянь не перевищує кількості змінних). Нерівність (8) можна 
переписати у вигляді: 

2 kn       (9) 

Кількість фаз не може перевищувати кількості компонент плюс дві. Це 
правило відоме як правило фаз Гіббса.  

В однокомпонентній системі, наприклад, 1k  і максимальна кількість фаз, 
які можуть перебувати в рівновазі, дорівнює трьом: 3max n . Якщо ж число 

фаз менше, ніж 2k , то в рівняннях (7) певна частина змінних, а саме 
02  nkf  може мати довільне значення, тобто їх можна міняти, не 

порушуючи рівноваги системи. Число  

02  nkf     (10) 

називають кількістю ступенів свободи системи (або її варіантністю). 
Оскільки вирази (9) та (10) еквівалентні, то (10) також часто вважають 
правилом фаз Гіббса. 

 

  Діаграми стану однокомпонентних систем. Лінії рівноваги фаз. 
Потрійні точки.  
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Якщо однокомпонентна ( 1k ) система є однофазною ( 1n ), то її 
варіантність (кількість ступенів свободи) дорівнює 2f , як це видно з 
формули (10). Отже, два термодинамічні параметри, тиск і температура 

),( TP  можуть вільно змінюватися і система під час таких змін стало 
перебуває у термодинамічній рівновазі. Таким чином, однофазному стану 
однокомпонентної системи відповідає майже кожна точка на площині ( TP, ), 
окрім, можливо, деяких особливих ліній і точок (див. рисунок). 

За умови рівноважного існування двох фаз ( 2n ) варіантність системи 
1f . Тому лише одна з двох величин ),( TP  може бути незалежною змінною 

(припустимо, що це температура T ) а інша повинна бути функцією від неї:  

)(TPP     (11) 

Рівняння (11) встановлює залежність тиску від температури в умовах 
двофазної рівноваги. З геометричної точки зору таке рівняння окреслює 
певну лінію на площині  TP, , тобто на діаграмі стану. Такі лінії різних 
двофазних рівноваг показані на рисункові:  

 «тверде-рідке», або лінія плавлення-кристалізації;  

 «рідке-газ»,або лінія кипіння-конденсації8;  

 «тверде-газ», або лінія сублімації-кристалізації. 

Якщо термодинамічний стан системи змінювати уздовж однієї з цих трьох 
ліній, стан двофазної рівноваги не порушуватиметься. Якщо ж точка, яка 
зображує стан системи, «зійде» з такої лінії, то система опиниться у 
нерівноважному стані, і позаяк умова рівноваги (11) більше не 
виконується, вона з часом перейде у рівноважний, тобто однофазний стан.  

При рівновазі максимальної можливої кількості фаз 3n , система є 
нонваріантною, тобто 0f . Отже, кількість рівнянь дорівнює кількості 
змінних, і система (7) має фіксоване рішення для температури та тиску: 

33 , TTPP   , які визначають на діаграмі так звану потрійну точку, або 
точку трифазної рівноваги. В цій точці перетинаються всі лінії двофазної 
рівноваги.  

 

 Класифікація фазових переходів. Фазові перетворення першого роду та 
рівняння Клапейрона-Клаузіуса. 

Зрозуміло, що на лінії двофазної рівноваги 
хімічні потенціали фаз однакові 

  ),(, 21 TPTP      (12) 

і тому перехід частинок з фази до фази є 
динамічно врівноваженим: скільки частинок входить 
у кожну фазу, стільки ж і виходить в одиницю 
часу.  

Якщо ж в певному термодинамічному процесі, 
система змінює свій стан від стану 1 ( 11, PT ) до стану 2  22 , PT , і при 
цьому ці стани лежать по різні сторони від лінії двофазної рівноваги, 
тобто вона перетинається в процесі зміни стану,  то відбувається фазове 

                                                 
8 Варто звернути увагу, що на відміну від лінії «плавлення-кристалізації» лінія 
«кипіння-конденсації» не продовжується безмежно, а закінчується у так званий 
критичній точці, в якій газ перестає відрізнятися за своїми параметрами від 
рідини. 

Рідина

Твердий 
стан 

3P  

3T  T

P  

Газ
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перетворення, або фазовий перехід з однієї фази до іншої, пов’язаний з 
порушенням матеріальної рівноваги поміж фазами. 

Отже, перехід через лінію двофазної рівноваги тягне за собою фазове 
перетворення, або фазовий перехід. Стійкою при цьому є та фаза яка має 
менший хімічний потенціал при фіксованих температурі та тиску. Якщо в 

точці 1 виконується умова ),(),( 11
2

11
1 TPTP   , тобто частинки переважно 

переходять до першої фази і вона є стійкою, , то в точці 2 виконується 

протилежна нерівність ),(),( 22
2

22
2 TPTP    і стійкою є вже друга фаза.  

Повним диференціалом за умов обраного набору незалежних змінних ( NPT ,, ) 
є диференціал термодинамічного потенціалу Гіббса: 

2
2

1
1 dNdNVdPSdTdG       (13) 

Згідно до теореми Максвелла (або співвідношення Максвелла),завдяки 
повноті диференціалу (13) повинні виконуватися наступні співвідношення: 































































2,1
0

2,1

2,1

2,1
0

2,1

2,1

s
N

S

T

N

V

P

P

T





  (14) 

Де ( 2,1
0

2,1
0 , s ) відповідно є питомі об’єм та ентропія, тобто відповідні 

величини в розрахунку на одну частинку в тій чи іншій фазі. 

Відповідно до умови (12) в точках лінії двофазної рівноваги:  

0),(),( 2112  TPTP     (15) 

Візьмемо диференціал від частин (15): 
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З урахуванням співвідношень (14) останнє рівняння може набути такої 
форми: 

 
 1

0
2
0

1
0

2
0

 



ss

dT

dP
    (17) 

Яке є диференціальним рівнянням (воно має назву рівняння Клапейрона-
Клаузіуса) для лінії двофазної рівноваги. Рівнянню (17) можна надати 
іншої форми зважуючи на те, що різність питомих ентропій пов’язана з 
питомою прихованою теплотою переходу (в розрахунку на одну частинку) та 
його температурою: 

T

q
ss 212

0
2
0      (18) 

Тому можна бачити, що: 

 1
0

2
0

12

 


T

q

dT

dP
   (19) 

Описаний вище фазовий перехід передбачає, що у точках на лінії переходу 
обертається хімічні потенціали однакові, а перші похідні від хімічного 
потенціалу (див. (14)) не нульові і потерпають розрив другого роду у 
точках лінії переходу. Завдяки цьому такі переходи демонструють ненульову 
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питому приховану теплоту 012 q . Еренфест запропонував називати такі 
переходи переходами першого роду, зважаючи на те, що розрив 
спостерігається у похідних першого порядку від хімічного потенціалу.  

У фазових переходах другого роду перші похідні від хімічного потенціалу 
по температурі та тиску не потерпають розриву (стрибка), тому для таких 

переходів ;0;0 1
0

2
0

1
0

2
0  ss  отже, питомий об’єм не змінюється , 

прихована теплота переходу є нульовою і рівняння Клапейрона-Клаузіуса у 
вигляді (17), або (19) непридатне. Втім в таких переходах розрив 
(обмежений стрибок) потерпають вже другі похідні від хімічного 
потенціалу.  

Переходи вищого, ніж другий, порядку відповідно до класифікації Еренфеста 
демонструють розриви, або інші сингулярності, у похідних старшого порядку 
від хімічних потенціалів різних фаз. 

 

Статистична фізика: лекція № 7 

Опис руху в класичній механіці. Мікро- та макроскопічні стани 
багаточастинкової системи. Рівноважний стан. 

Математичний апарат статистичної фізики9.  

Фазовий простір. Статистичний ансамбль систем.  
Густина фазових точок. Теорема Ліувілля. 

Мікроскопічний опис стану квантової системи.  

Число квантових станів системи при заданих значеннях енергії і 
зовнішніх параметрів.  

Співвідношення невизначеностей і число квантових станів. 
 

 Макроскопічний і мікроскопічний стани системи. Опис руху в 
класичній механіці.  

Під час вивчення макросистеми в статистичній фізиці завжди спираються на 
певну її модель на мікрорівні. Спочатку визначають структурні одиниці 
макросистеми (молекули, атоми, іони, тощо). Далі з’ясовують в який спосіб 
ці одиниці взаємодіють поміж собою і яким шляхом описувати їх рух: з 
точки зору класичної, чи, можливо, з позицій квантової механіки. 

Загальне припущення про рух мікрочастинок полягає в його стохастичності, 
тобто випадковому характері, невпорядкованості. Частинку розглядатимемо 
як матеріальну точку. Якщо вважати, що векторний імпульс (p


) та векторна 

координата (q

) такої частинки одночасно мають певне значення в кожний 

окремий момент часу, тобто є одночасно заданими функціями часу, то таке 
припущення відповідає класичному (неквантовому) підходу. Як векторна 
координата, так і векторний імпульс частинки мають три скалярні, не 
обов’язково, що декартові,  компоненти:  321 ,, ppp  і  321 ,, qqq . Одночасне 

завдання N3  координат, та N3  імпульсів визначає мікроскопічний стан 

                                                 
9Для  самостійного вивчення студентами 
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системи. Це, умовно кажучи, детальний мікроскопічний рівень інформації 
про систему, яка має N  статистично незалежних частинок. 

Макроскопічний стан системи описується невеликою кількістю макропараметрів 
(енергія системи, її сумарний векторний імпульс, температура, тиск, 
об’єм, густина, тощо). Такі параметри характеризують не окрему 
мікрочастинку, а систему загалом. Вони “малюють крупноплановий портрет” 
системи, без зайвих дрібних деталей.  

Мікростани системи безперервно змінюють один іншого, хоча б тому, що 
кожна координата і кожен імпульс для всіх мікрочастинок залежать від 
часу: )p(),q( tt  згідно із законом руху кожної частинки. Перенумеруємо 

скалярні компоненти координат та імпульсів індексом: Ni 3,...,2,1 . Якщо 
залишатися у межах класичної теоретичної механіки, то динамічний підхід 
до опису руху системи полягає у вирішенні системи рівнянь Гамільтона: 




























i

i
i

i

i
i

q

qpH

t

p
p

p

qpH

t

q
q

),(

),(





      (1)  

де ),()(),( qpUpTqpH   - функція Гамільтона в класичній механіці 
дорівнююча сумі кінетичної енергії та силової функції системи, або повній 

механічній енергії системи qpE ,( ). Під символами ),( qp  надалі 
розумітимемо сукупність всіх 3N -координат та всіх 3N -імпульсів системи 

статистично незалежних частинок: отже,   




ddqdpdpdq i

N

i
i

3

1

    (2) 

Макростан системи, проте, навіть при безупинній та стохастичній зміні її 
мікростанів, може залишатися незмінним в часі, сталим та однорідним: тоді 

зокрема матимемо, що constqpE ),( . Повна механічна енергія системи (і 
взагалі всі системні макропараметри) не залежить ні від часу, ні від 

координат. Такі макростани, як відомо з термодинаміки, називають 
рівноважними станами. 

 
 Математичний апарат статистичної фізики.  

Основою математичного апарату статистичної фізики є теорія ймовірностей. 
Ймовірністю називають кількісну міру можливості відбуття певної події. 
Подією ми називатимемо певний результат будь-якого експерименту, 
випробування. Різні експерименти мають різні спектри подій-результатів. 
Експеримент може мати дискретний, або суцільний, обмежений, або 
інфінітний спектр подій.  

Припустимо, що наш експеримент полягає у стеженні за деяким фізичним 
параметром X , який характеризує стан системи. Багаторазово фіксуючи 
результати виміру величини X , ми кожен раз отримуємо дещо інакші 
результати: ,...,...,, 21 nxxx , причому не можемо передбачити результат  1n -го 
експерименту, навіть якщо маємо результати всіх попередніх n  
експериментів. Такий макропараметр системи називатимемо випадковою 
величиною і позначатимемо великою літерою латинці.  

Навпаки, низка фіксованих результатів вимірів випадкового параметру 
(низка величин  ,...,...,, 21 nxxx , де індекс ,...2,1n  нумерує послідовні виміри 
(спостереження) не є низкою випадкових величин, оскільки кожен результат 

nx  є фіксованою невипадковою величиною, конкретною реалізацією 
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випадкової величини X  в деякому n -му 
спостережені. Ці величини позначатимемо 

малими літерами латиниці. 
Якщо випадкова величина може приймати лише низку 
дискретних значень (як-от, наприклад, кількість очок 
при киданні грального кубику), то розподіл 
ймовірностей для такої величини задають за 
допомогою дворядної таблиці, в якій указують всі 
можливі значення зі спектру  випадкової величини та 
ймовірність кожного з них: 

Можливі 
значення X  1x  2x  ... nx  ... 

Ймовірності 
значень 1w  2w  ... nw  ... 

 

Під ймовірністю конкретного можливого значення такої величини розуміють наступний вираз: 

 










N

n
n N

N
w lim    (3) 

де під N  розуміють кількість спостережень, а під nN - кількість тих 

експериментів, в яких фіксувався результат nx . № (3) випливає наступна 
умова нормування для ймовірностей: 

1


 N

N
w n

n

n
n        (4) 

Зустрічаються також випадкові величини з суцільним спектром. Розглянемо 
відхилення попадання (припустимо пострілу) від центра мішені по 
абсолютній величині: зрозуміло, що таке відхилення теоретично лежить у 
межах  X0 . У цих межах випадкове відхилення X  може приймати 
суцільний ряд значень, кількість яких є не лише необмеженою, але навіть 
не може бути перенумерована цілими числами. 

Зафіксуємо деяку невипадкову точку на числовій осі x . Введемо тепер 
функцію  

 xXwxF )(       (5) 

яка показує ймовірність того, що випадкова величина X  в результаті 
чергового спостереження отримає значення менше за попередню фіксовану 
величину x . Чим правіше на числовій осі зафіксовано цю саму точку x , тим 
більшим буде значення функції )(xF , адже імовірність «вкластися» у ширший 
інтервал є більшою. 

Зрозуміло, що  

0)0( F ; )(F     (6) 

У першому випадку точка 0 є “лівим кордоном” випадкової величини і її 
конкретна реалізація 0nx  , отже не може лежати “лівіше” (тобто бути 

від’ємною). У другому випадку точка  є “правим кордоном” для відхилення. 
Будь-яке конкретне відхилення завжди менше за цю величину.  
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Таким чином функція )(xF , яку називають інтегральною функцією розподілу для 

випадкової величини X , повинна бути монотонно зростаючою, у межах від 0 до 
1, функцією подібною до показаної на рисункові.  

Розглянемо диференціал від такої функції:  

 )()()( xFdxxFxdF  (7) 

Якщо )( dxxF   є ймовірність того, що результат спостереження потрапить 

лівіше точки dxx  , а )(xF  - ймовірність потрапити лівіше точки x , то 

диференціал )(xdF  має показувати ймовірність )(xdw  потрапити на інтервал 

dx поміж вказаними вище точками. Тобто: 

 dxxXxwxdF )(       (8) 

З математичного аналізу відомо, що : 

dx
x

F
xdF 










)(   (9) 

де 
x

F
xf




)(  - похідна від інтегральної функції розподілу і має назву 

диференціальної функції розподілу випадкової величини X . Ця функція також має 
назву густини ймовірності Зрозуміло також, що: 


x

dxxfxF
0

)()(    (10) 

З урахуванням властивостей )(xF , функція )(xf  повинна обертатися в нуль 

на кордонах інтервалу ( 0)()0(  ff ), бути всюди позитивною і, нарешті, 

мати єдиний максимум при певному значенні mxx  . Її типовий вигляд 
наведено на рисункові. 

Умова нормування ймовірностей для такої суцільної випадкової величини X  
має вигляд: 

      10)()(
00




FFdxxfxdw     

(11) 

Складні події та їх імовірності. 
Припустимо що система знаходиться в 
деякому можливому  i -му стані дискретного 
спектру власних станів системи. Певна річ, 
що система не може одночасно з тим 
знаходитися в якомусь іншому, хоча б і теж 
можливому j -му стані, якщо ji  .  Факт 

перебування системи в i -стані виключає 
можливість її перебування одночасно в j -

стані, і навпаки. Такі події, які виключають одна одну,  мають назву 
несумісних подій.  

В багатьох випадках цікаво знати ймовірність перебування системи в одному 
з двох несумісних станів, байдуже в якому. Така ймовірність дорівнює сумі 
ймовірностей кожного зі станів: 

  ji wwjiw    (12) 

mx  
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Формула (1.6) презентує частковий випадок теореми складання ймовірностей 
. Подію    jiji ,  вважають складною подією типу логічної сумою (або 
ще диз’юнкцією) двох подій. Така подія вважається реалізованою, якщо 
відбулася хоча б одна з двох подій (байдуже яка), які логічно 
складаються. Складні події типу диз’юнкції (логічної суми) називають ще 
подіями типу “або-або”. Логічна сума може створюватися з будь-якої 
кількості (не тільки з двох) простих подій. У загальному випадку теорема 
(1.6) отримує вигляд: 


n

n
n

n wiw )(     (13) 

Введемо поняття логічного заперечення якоїсь події. Припустимо iw  - 

ймовірність перебування системи в i -стані, і нехай iw - ймовірність того, 
що система перебуває в якомусь іншому, стані. Зрозуміло, що остання подія 
є логічною сумою по всіх інших можливих станах системи, окрім i -стану. 
Дві ці події(система перебуває в i -стані, або ж система перебуває “не в 
i -стані”) вичерпують весь спектр можливих подій. Тому: 

1 ii ww     (14) 

останнє твердження складає зміст теореми Моргана: «сума ймовірностей 
деякої події та її логічного заперечення (“не події”) тотожно дорівнює 
одиниці». Нагадаємо, що формули (12-14) застосовуються лише для 
несумісних подій. 

Розглянемо тепер дві різні системи і припустимо, що вони абсолютно 

незалежні одна від іншої. Припустимо, що 1
iw  - ймовірність того, що перша 

система знаходиться в деякому i -стані, а 2
jw  - ймовірність того, що друга 

система знаходиться в певному j -стані.  

Поставимо питання про ймовірність такої складної події, коли одночасно 
перша система перебуває в i -стані, а друга в j -стані. Така подія зветься 

логічним добутком двох подій:   jiji , , або їх кон’юнкцією, або ще 

подією типу “і-і”. Така складна подія вважається реалізованою лише тоді, 
коли відбулися всі події, які складають логічний добуток. Для логічного 
добутку двох подій маємо: 

212,1
jiji www     (15) 

Формула презентує частинний випадок теореми про добуток ймовірностей 
статистично незалежних подій. У загальному випадку більш складних 
логічних добутків вона виглядає так: 


n

n
n

n wiw )(    (16) 

Обчислення середніх значень випадкових величин. Визначення дисперсій та 
флуктуацій. 

Статистичним середнім значенням , або математичним очікуванням випадкової 
величини  X  з дискретним спектром називають фактично її середнє 
арифметичне значення. 

n
n

n xwX       (17) 

де сумування ведеться по всім можливим станам системи. 
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Так само просто знаходиться середнє значення будь-якої однозначної 
функції )(Xg  цього фізичного макропарапараметру системи: 

 n
n

n xgwXg )(      (18) 

Формули (17,18)) легко узагальнюються на випадкові величини із суцільним спектром: 




















max

min

max

min

)()()(

)(

x

x

x

x

dxxfxgXg

dxxfxX

(19) 

Де під )(xf  треба розуміти функцію густини ймовірності для фізичного параметру X . 

Операція усереднення (17-19) є лінійною операцією і підкоряється очевидним умовам: 

 XX   , якщо   - невипадкове число 

     якщо  - невипадкове число 

 YXYX   

 YXXY  , якщо X  та Y  статистично незалежні величини. 

Для характеристики відхилення випадкового параметру X  від свого середнього значення XX    

використовують величину генеральної дисперсії: 

   02
22222  XXXXXXXXDX  (20) 

Знак рівності в останньому виразі з’являється лише тоді, коли X  є детермінованою (невипадковою) 

величиною. Флуктуацією ( або невизначеністю) X  називають наступну величину: 

22 XXDX X       (21) 

Як видно з формул цього параграфу, для знаходження середніх величини 
фізичних макропараметрів системи та їх флуктуацій необхідно знати лише 
розподіл ймовірностей: у вигляді таблиці ймовірностей для випадкових 
величин з дискретним спектром, або у вигляді функції густини ймовірності 
для випадкових величин з суцільним спектром. 

 

 Статистичний ансамбль систем. 
Фазовий простір. 

Припустимо, що на N3 - координат та N3 - 
імпульсів системи накладені певні зв’язки, 
іншими словами не всі координати та імпульси 
є незалежними. У такому разі, величина 

fNs  3     (21) 

де f - кількість рівнянь зв’язку поміж 
незалежними координатами системи, має назву кількості ступенів свободи 
системи. Ця величина показує мінімальну кількість незалежних координат, 
необхідних для опису руху системи на мікрорівні. Зрозуміло, що Ns 3 . 
Загалом для класичного опису руху системи на мікрорівні (динамічного 

2A  

x  

xp  

x  

E  

EE   
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опису) потрібно s2  змінних ( s - незалежних координат і стільки ж 
незалежних імпульсів).  

Розглянемо для прикладу найпростішу систему, яка складається з однієї 
( 1N ) частинки, яка до того ж має два рівняння зв’язку на координати 
(припустимо 0 zy ), тобто може рухатися лише уздовж осі x . Така система 
має лише одну  ступінь свободи: отже, для опису руху такої частинки 
досить задати одну незалежну координату ( xq 1 ) та один спряжений імпульс 

( xpp  ). Припустимо, частинки здійснює гармонічні коливання уздовж осі 

навколо точки 0x  з амплітудою A. 

Мікроскопічний стан такої системи повністю задається зображувальною 
точкою ( , xx p ) на фазовій площині (див. рисунок). Зміна мікростану системи 
з часом призводить до того, що зображувальна точка описує певну 
траєкторію на фазовій площині ),( xpx . Для нашої системи така фазова 
траєкторія знаходиться з рівняння зв’язку поміж координатою та імпульсом. 
Виходячи з законів коливального руху маємо, що: 

)cos()();sin()( tAmtptAtx x       (22) 

Звідси, неважко отримати рівняння зв’язку: 

1
22
















Am

p

A

x x


     (23) 

з якого безпосередньо видно, що фазовою траєкторією нашої системи є 
еліпс, показаний на рисункові.  

Кожна точка еліпсу на рисункові  є іншим мікростаном нашої примітивної 
системи, відмінним від решти. Втім, всі можливі при фіксованій амплітуді 

та частоті, отже при фіксований енергії 22 AmE  ,  мікростани  системи 
лежать на одному й тому ж еліпсі. Їх повна сукупність (всі точки еліпсу) 
складає один-єдиний макростан, системи. Який характеризується такими 
макропараметрами як амплітуда коливань A, їх повна енергія тощо.  

Як видно з рисунку, одному макростану системи належить безліч мікростанів 
(кількість точок на еліпсі є безкінечною). Іншому макростану тої ж 
системи, (припустимо з EE  , AA  ) відповідав би інший концентричний 
еліпс, з меншою амплітудою, показаний на рисункові. Безліч таких еліпсів 
може заповнювати собою всю фазову площину. Порівнюючи два різних еліпси, 
завжди можна сказати, якому з них відповідає більша кількість мікростанів 
: тому з них, який має більший периметр, довжину фазової траєкторії. 
Незважаючи на те, що обидва еліпси (і менший і більший) містять на своїх 
периметрах безліч точок-мікростанів. 

Поняття фазового простору можна розповсюдити на систему, яка має значно 
більше ступенів свободи . Тоді Ns 3  осей зарезервуємо для всіх 
незалежних координат системи, та стільки ж осей – для незалежних 
спряжених імпульсів. Такий s2 -вимірний простір складається з двох s -
вимірних підпросторів: координатного (або конфігуративного) та 
імпульсного. Будь-якому мікростанові системи відповідає в ньому певна 
точка (фазова, або ще зображувальна точка), а зміні мікростанів – 
пересування фазової точки у просторі, де вона рухається уздовж фазової 
траєкторії.  

Фазову траєкторію можна знайти, у межах динамічного підходу, після  
вирішення системи рівнянь Гамільтона (1) та знаходження s2  функцій 

)(),( tptq ii  де si ,...,2,1 . 
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Розглянемо малий елемент об’єму фазового простору: 

dpdqd       (24) 

Уявимо собі, що весь фазовий простір розділено на такі малі комірки 
однакового об’єму. Поставимо питання: якою є ймовірність того, що система 
перебуває в мікростані, зображувальна точка якого потрапляє саме у певну 
комірку ),( qpd  ?  

Зрозуміло, що поміж такою ймовірністю та величиною об’єму комірки  
повинна бути пряма пропорційність, а коефіцієнт пропорційності повинен 
залежати від координат тієї точки - qp,  - фазового простору, навколо 

якої розташовано елемент об’єму ),( qpd . Тобто: 

 dqpqpdW ),(),(          (25) 

де функція ),( qp  за сутністю є густиною ймовірності у фазовому просторі, 
а за назвою – статистичною функцією розподілу. Згідно до теореми 
складання ймовірностей маємо: 

 
 ),(

1),(),(
qp

dpdqqpqpdw       (26) 

Знайдення функції статистичного розподілу з для будь-якої великої системи 
– головна мета статистичної фізики, а функція ),( qp - головний інструмент 
переходу від динамічного опису мікростанів системи до статистичного опису 
її макростанів та макропараметрів. 

Припустимо, що фіксація положення зображувальної точки системи у фазовому 
просторі відбувається з інтервалом часу t : і 
 )(),...,(),...,(),0( 10 tNAtjAtAA Nj   - є послідовні позиції зображувальної точки 

у фазовому просторі. Сукупність цих точок-позицій є результатом еволюції 
мікростанів однієї системи в часі, точніше слідами такої еволюції у 
фазовому просторі. Лінія, яка з’єднує ці точки, є наближеною до фазової 
траєкторії системи (і тим ближча, чим меншим є інтервал t ). Густина 
таких точок в певному елементі фазового об’єму dpdqd   тим більша, чим 
більшою є імовірність (25), отже вона пропорційна функції статистичного 
розподілу ),( qp .  

Проте, можна підійти до питання визначення функції ),( qp  з інших 

позицій. Уявимо собі велику кількість ( N ) абсолютно ідентичних в 
момент часу 0t  систем – така сукупність зветься ансамблем Гіббса. Всі 
вони знаходяться спершу  в одній позиції у фазовому просторі - )0(A , втім 
кожна з них є статистично незалежною у своїй еволюції в часі. Тому через 
інтервал часу t  кожна з цих систем еволюціонує в якусь з перерахованих 
вище позицій  )(),...,(),...,(),0( 10 tNAtjAtAA Nj  , причому в кожну позицію 

потрапляє певна кількість NN j 0  систем ансамблю. У такому разі можна 

розглядати наведену вище сукупність з N  точок у фазовому просторі як 
результат незалежної еволюції на протязі часу t  всіх систем ансамблю. 

Чи еквівалентною буде густина точок, отже, і статистична функція 
розподілу у фазовому просторі, визначена першим і другим способами? 
Іншими словами, чи однаковим буде результат усереднення по часу, як у 
першому способі, або по ансамблю, як у другому? Позитивна відповідь на це 
питання вважається центральною гіпотезою статистичної фізики. Яка має 
спеціальну назву: ергодична гіпотеза. 

 Густина фазових точок. Теорема Ліувілля. 
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Якщо система рівноважна, тобто стаціонарна та однорідна, то її функція 
),( qp  також повинна бути стаціонарною, тобто незмінною в часі. Отже, 

густина зображувальних точок в кожному елементі фазового простору d  
повинна бути незмінною: скільки точок приходить (“втікає”) за інтервал 
часу t  в елемент об’єму, стільки ж повинно і виходити (“витікати”). 
Стала “течія” фазових точок у фазовому просторі, пов’язана з безперервною 
зміною мікро станів системи, повинна бути стаціонарною. 

Формально цей рух зображувальних точок можна розглядати як рух молекул 
ідеального газу, не взаємодіючих поміж собою, адже системи в ансамблі, 
стан кожної з яких показує зображувальна точка-“молекула”, є статистично 
незалежними в своїй еволюції. Рух таких “молекул-точок” відбувається в 

s2 - вимірному просторі. Відповідне рівняння безперервності для густини 
ймовірності виглядає наступним чином: 

  0



v
div

t
 (27) 

Під дивергенцією у  s2 -вимірному просторі треба розуміти вираз:  
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  )( v  (28) 

де  ii pq  , - похідні по часу від координат (тобто швидкості) та імпульсів 
(тобто сили).  

З(27,28) маємо: 
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Стаціонарність стану потребує аби 0



t


, отже  густина ймовірності 

(функція статистичного розподілу) не залежала від часу явно. Звідси та з 
(29) маємо: 
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   (30) 

Друга сума в рівнянні (30) автоматично обертається в нуль, внаслідок 
рівнянь Гамільтона (1), з яких випливає, що:   

iii

i

i pq

H

p

p

q

q










 2

1 
 (31) 

З урахуванням цих обставин маємо, що: 
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Отже, не лише часткова, але й повна похідна по часу від статистичної 
функції розподілу дорівнює нулю. Таким чином функція розподілу ),( qp  є 
інтегралом руху, стаціонарною величиною. Це твердження, математично 
сформульоване у рівнянні (32), відоме під назвою теореми Ліувілля. 

  

 Макроскопічний і мікроскопічний стани системи. Опис руху в 
класичній механіці.  
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У класичній статистичній фізиці мікроскопічний стан системи визначається 
завданням s  координат та s  імпульсів і статистична функція розподілу 

),( qp  є функцією від цих s2  змінних. У квантовій статистичній фізиці 
такий спосіб завдання мікростанів системи непридатний з огляду на 
неможливість одночасного визначення як координат, так і спряжених до них 
імпульсів, згідно до принципу невизначеностей Гейзенберга. 

У квантовій статистичній фізиці можливі інші способи визначення проблеми 
опису мікростанів: 

 По-перше, можна ставити питання щодо імовірності стану системи, 
яка описується деяким вектором стану ),( tq  (хвильовою функцією), 

якому відповідає певний можливий рівень енергії E  (де   - набір 
відповідних квантових чисел).  

 По-друге, можна шукати розподіл ймовірностей для координат )(q , 

або для імпульсів )( p  системи. 

 По-третє, можна шукати розподіл ймовірності для будь-якої фізичної 
величини, залежної від координат та імпульсів ),( qpF . 

Закон розподілу ймовірності для координат можна отримати, якщо 
скористатися законами квантової механіки. Припустимо, що 

 sin qqqqq ,...,,...,,)( 21    є стаціонарним вектором стану певної квантової 

системи, відповідним енергії nE . Тоді ймовірність того, що координати 

системи зосереджені в інтервалах  iii dqqq ,   для si ,...,2,1  має вигляд: 

  dqqdqqqdw n

2
)()(      (1) 

У більш загальному випадку, коли кожний такий стан має певну ймовірність 

nw , а система перебуває у «мішаному» стані   )(qcq n
n

n  вираз (1) 

отримує таку форму: 

  dqqwdqqqdw n
n

n

2
)()(      (2) 

Середнє значення певної фізичної величини визначається виразом: 

dqFFF
q

  ˆˆ *     (3) 

Де )(q  - вектор стану квантової системи, F̂  - оператор відповідної 
фізичної величини.  

Для квантової системи, котра знаходиться у рівноважному, отже, й 
стаціонарному стані, енергетичний спектр та квантові стани знаходяться зі 
стаціонарного рівняння Шредінгера: 

nnn EH ˆ    (4) 

де Ĥ  - оператор Гамільтона для системи має формує: 

 Nj1q q,...,q,...,q
j


 U

m
H

j j











  1

2
ˆ

2

    (5) 

індекс Nj ,...,2,1  нумерує частинки в системі, а векторна координата jq  

має три скалярні компоненти   jqqq 321 ,, .  
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З точки зору статистичної фізики нам цікаві енергетичні рівні nE  системи 

та кратність їх виродження n  (кількість різних квантових станів з 
однаковою енергією), а також набір квантових чисел, який повністю 
визначає стан системи. Рівняння (4) найчастіше можна вирішити лише 
наближено. Виключенням є хіба що ідеальний газ, у якого всі частинки є 
незалежними. Для ідеального газу маємо: 





N

j
j

1

)()( jn21 qq,...,q,q


      (6) 

і рівняння (1) після підстановки в нього виразу (6) розпадається на N  
тотожних рівнянь для кожної окремої частинки вигляду: 












j

j

jjjj

EE

EH




ˆ

     (7) 

причому індекс j  нумерує різні стани певної 
частинки, а енергія системи є просто адитивна сума 
енергій всіх її частинок. 

Існує багато задач, в яких взаємодією поміж 
частинами системи (підсистемами) можна знехтувати, 
тому що енергія такої взаємодії набагато менше 
енергії кожної з підсистем. Такі слабо взаємодіючі 
підсистеми можна вважати квазізамкненими, майже 
ізольованими.  

Опис квантових мікростанів у такому випадку можна 
звести до переліку квантових станів всіх таких квазізамкнених підсистем, 
з яких складається ціла система. Нехтуючи взаємодією підсистем, маємо: 


s

sEE  

 (0.1), де індекс ,...3,2,1s  в цій формулі нумерує квазізамкнені 
підсистеми. 

 

 Число квантових станів системи при заданих значеннях енергії і 
зовнішніх параметрів.  

 

Розглянемо, для прикладу, вираз для енергії квантової частинки, 
локалізованої у так званій “кубічній потенціальній скрині”, де потенційна 
енергія задовольняє умовам: 

  






azyxU

azyxU

,0),,(;

),0(),,(;0
    (8) 

З квантової механіки відомо, що енергія частинки у такій “потенціальній 
скрині” дорівнює: 

   2
3

2
2

2
12

2

2
nnn

ma
E 


     (9) 

а 

0U  

U  
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Де a  - геометричний розмір «потенціальної скрині» 
 321 ,, nnn  - набір з трьох незалежних цілих чисел: 

,...3,2,13,2,1 n  . Мінімальна енергія частинки відповідає 

набору квантових чисел:  1,1,1 . 

У статистичній фізиці цікаво знати таку 
характеристику системи як число можливих квантових 
станів системи при фіксованих значеннях її енергії 
та зовнішніх параметрів. Знайдемо таке число 
квантових станів для ідеального газу, для якого 
квазізамкненою підсистемою ми можемо вважати кожну 
окрему молекулу, як це виникає з (7). Кожну молекулу 

такого газу вважаємо квантовою частинкою, вміщеною в «потенціальну 

скриню» з розмірами 3 Va  , де 3aV   - об’єм газу. 

Визначимо спочатку кількість можливих квантових станів для окремої 
молекули, причому таких станів, енергія яких не перевищує деякого 
фіксованого значення  , тобто   E0 . Для цього розглянемо умовний 

тривимірний простір квантових чисел ( 321 ,, nnn ), тобто звичайну Декартову 

систему координат, по осях якої відкладаються квантові числа 321 ,, nnn . 

Виходячи з формули (9) зауважуємо, що квантові числа лежать в межах: 
],1[ maxn . Максимальне можливе квантове число maxn  при зафіксованій енергії 

  дорівнює:  
2/1

22

2

max

2











ma

n     (10) 

 

Дискретні точки, які зображують в нашому умовному просторі квантових 
чисел стан системи згідно з рівнянням (9), лежать в позитивному октанті 
цього простору, по-перше, і у межах сегменту кулі з радіусом maxn (10), 

по-друге (див. рис.) При великих 1max n  рівняння (10) є досить точним10 
і тому кількість квантових станів (дискретних точок) з енергією меншою за 
 , дорівнює просто об’єму сферичного сегменту: 

   
32

2/33
3
max 6

2

3

4

8

1


 ma

n 





    (11) 

де Va 3  є об’ємом “потенціальної скрині”.  

Зробимо деякі чисельні оцінки: якщо об’єм ідеального газу 610~ V м3, 
тобто один кубічний сантиметр, то при 02.0~~ 0Tk еВ, що приблизно 
відповідає звичайній кімнатній температурі, з (11) отримуємо, що 

  2410~ , що є достатньо великою кількістю можливих квантових станів, 

співмірною з числом Авогадро AN . 

                                                 
10 Насправді від правої частині рівняння (10) треба взяти лише цілу частину, адже 

число maxn  повинно бути цілим.  Втім для великих чисел ціла частина майже 

дорівнює самому числу.  

maxn  
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Визначимо кількість станів на одиничний інтервал енергії d , тобто 
кількість можливих квантових станів на інтервалі   d, . Для цього 
визначимо диференціал від (11) 

  





 dm
mV

dd 2/1

32
2

2
)(













     (12)  

Функція  

   






g       (13) 

має назву густини станів. Отже, кількість станів на інтервалі енергії d  
дорівнює: 

     dgd      (14) 

Причому для квантового ідеального газу маємо: 

  



32

2/3

4

2
)(



Vm
g      (15) 

Знайдемо тепер ту ж саму величину, для класичної системи, яка перебуває у 
тій самій кубічній посудині об’ємом V . Для класичної частинки (молекули) 
енергія залежить лише від імпульсу  і квадратично, як і має бути для 
вільної частинки: 

m

ppp

m

p zyx

22

2222 
     (16) 

   

Об’єм фазового простору, котрий займають мікро стани класичної частинки 
є: 







  3

max3

4
pVdpdq

pq


    (17) 

Де згідно до (16):  

mp 2max       (18) 

радіус сфери в імпульсному просторі в середині якої лежать всі мікростани 
з енергією меншою фіксованої величини  . Візьмемо диференціал від (17): 

    


 dmmVdd 2/124









    (19) 

В об’ємі фазового простору )(d  розташовані всі можливі класичні 

мікростани, енергія яких лежить в інтервалі   d, .  

Тепер можна порівняти вирази: квантовий (12) та класичний (19). З 
порівняння видно, що: 

   
 32 

 


d
d      (20) 

Для системи з s - ступенями свободи рівняння (20) узагальнюється до 
такого вигляду :  



67 
 

   
 

  













s
class

quant

s

g
g

d
d











2

)(
)(

2
     (21) 

Таким чином, квантова статистика дозволяє 
детальніше характеризувати густину станів, 
визначаючи кількість різних квантових станів на 
одиничний інтервал енергії. У той час як 
класична статистика дозволяє лише порівнювати 
об’єми фазового простору, які відповідають 
одиничним інтервалам енергії на шкалі енергій.  

Поняття густини станів – одне з найважливіших в 
статистичній фізиці понять, яке дозволяє реально 
вираховувати статистичні макропараметри великих 
систем.  

   

 Співвідношення невизначеностей і число 
квантових станів. 

Згідно із співвідношенням невизначеності Гейзенберга:  

2/ ii pq    (22) 

Зрозуміло, що стала Планка   є природною мірою максимально можливої 
точності, з якою задаються одночасно координата iq  та спряжений до неї 

імпульс ip .  

Тому квантові стани повинні зображуватися, на відміну від класичних 
станів, не математичною точкою у фазовому просторі, а певним мінімальним 
об’ємом цього простору з розмірами: 

 sd 2min     (23) 

Відношення об’єму d , зайнятого у фазовому просторі певним набором 
квантових станів, до величини мінімального об’єму mind (23) саме й 

дорівнює кількості станів у такому наборі d , що й стверджується у 
рівняннях (20,21). Отже, стала Планка   визначає «квант об’єму» фазового 
простору згідно з (23). Якщо розмірами такого елементарного об’єму можна 
знехтувати, тобто вважати, що 0 , то від квантового опису фазового 
простору перейдемо до його класичного опису. 

Зауважимо, що поняття про кількість станів у певному їх наборі коректно 
лише для квантових станів, кожен з яких займає у фазовому просторі певну 
мінімальну за об’ємом комірку. Для класичних станів, кожен з яких 
вважається точкою у фазовому просторі, набір станів характеризується не 
їх кількістю (вона безкінечна), а лише тим об’ємом d , який цей набір 
станів займає у фазовому просторі.  

 

 

 

 

Вернер Гейзенберг 
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Статистична фізика: лекція № 8 
 
Постулат рівноймовірності мікростанів з однаковою енергією. 
Термодинамічна ймовірність або статистична вага макростану 
системи. Імовірність стану та ймовірність значення фізичної 
величини.  

Припущення про рівність середнього за статистичним ансамблем. 
Ергодична гіпотеза. Обчислення статистичного середнього за 
допомогою функції розподілу від енергії. 

Ізольована система. Мікроканонічний розподіл густини ймовірності. 
Статистичний зміст ентропії. 

Квазізамкнена система. Канонічний розподіл Гіббса. Вивід 
канонічного розподілу з мікроканонічного.  

Вивід канонічного розподілу з принципу максимуму ентропії. 
Термодинамічний зміст параметрів канонічного розподілу.  

 
 Постулат рівноймовірності мікростанів з однаковою енергією. 

Імовірність стану та імовірність значення фізичної величини. 

Зауважимо, що кожному макроскопічному стану системи (макростану) відповідає 
свій індивідуальний набір сумісних з ним мікроскоппічних станів (мікро 
станів). Інакше кажучи, у фазовому просторі серед множини можливих 
мікростанів завжди можна виокремити ті підмножини мікростанів, які є 
сумісними з конкретним макростаном .  

Таким шляхом весь фазовий простір можна розбити на сукупність фазових 
об’ємів  , кожен з яких містить лише ті мікростани, які забезпечують один 
і той самий макростан системи. Отже, макростан системи змінюватиметься лише 
за умов переходу її фазової (зображувальної) точки  з одного такого об’єму до 
іншого: mn  . І навпаки, кожен макростан системи залишається незмінним 

доти, доки фазова (зображувальна) точка перебуває в різних частинах одного з 
таких об’ємів.  

Якщо система є ізольованою, то всі мікростани, які належать до одного і 
того ж макростану з фіксованою енергією є абсолютно еквівалентні поміж 
собою. Зауважимо, що в рівноважному стані не лише енергія, а й всі інші 
мікропараметри, котрі характеризують макростан, повинні бути незмінними, 
стаціонарними. Екві- валентність всіх мікростанів, що належать до одного й 
того ж макростану, означає також рівну ймовірність перебування системи в 
кожному з цих мікро станів.  Отже, «всі мікростани, які є сумісними з одним і 
тим же макростаном, є рівно ймовірними”.  Наведене твердження відомо в 
статистичній фізиці як принцип рівноймовірності мікро станів. 

Кількість мікростанів, яка належить тому чи іншому макростанові є різною, 
тому величини фазових об’ємів, які займають різні макростани у фазовому 
просторі є різною: mn  . Чим більшим є такий об’єм, тим більша кількість 
мікростанів забезпечує деякий  макростан. Як у класичній, так і у квантовій 
статистиці вважається, що ймовірність макростану тим більша, чим більший 
фазовий об’єм займає він у фазовому просторі (тобто, чим більша кількість 
мікростанів є сумісною з цим макростаном). 
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Останній висновок безпосередньо випливає з принципу рівноймовірності 
мікростанів. Система тим довше знаходиться у тому чи іншому макростанові, 
чим більша кількість мікростанів є з ним сумісною, якщо ми спостерігаємо за 
еволюцією однієї системи протягом певного довгого часу. Якщо користуватися 
концепцією  ансамбля систем Гіббса, то в результаті часової еволюції у 
кожний макростан потрапляє тим більше систем з ансамблю, чим більший об’єм 
цей макростан займає у фазовому просторі, значить чим більше мікростанів до 
нього належить.   

У класичній статистиці мірою термодинамічної ймовірності конкретного 
макростану є просто той фазовий об’єм, який на нього припадає: 

),(, qpw classT       (1) 

У квантовій статистиці можна піти далі і розглядати як міру термодинамічної 
ймовірності кількість мікростанів, що належать певному макростанові: 

 
 squantT

qp
qpw

2

),(
,,


     (2) 

Класична (1) і квантова (2) міра термодинамічної імовірності  є 
пропорційними одна до іншої. Термодинамічні ймовірності (або статистичні 
ваги) (1) та (1) не є нормованими на інтервалі 0,1 ймовірностями, і тому 
вони показують не абсолютні, а лише відносні (порівняльні) ймовірності. 

Кількість мікростанів (2), а інколи і фазовий об’єм (2), називають також 
статистичною вагою макростану. Квантова статистична вага (2), наприклад, 
фактично показує кількість різних мікроскопічних  варіантів, у яких може 
реалізуватися певний макростан. У квантовій механіці відповідну величину 
також називають кратністю виродження певного стану. 

 

 Припущення про рівність середніх за часом та статистичним ансамблем. 
Ергодична гіпотеза. Обчислення статистичного середнього за допомогою 
функції розподілу від енергії. 

Нехай nt - то сумарний час, який система перебувала у певному n -му 
макростані. Різні стани зі спектру станів системи, (припустимо, що 
дискретного спектру), мають різні ймовірності, які можна покласти рівними: 









 

t

n
n t

t
w lim    (3) 

Сукупність чисел nw  утворює дискретний розподіл ймовірностей для станів 

системи. Нехай n -му стану системи відповідає деякий характерний параметр 
(фізична величина) - nF , який певним способом характеризує цей макростан. 

Тоді ймовірність стану nw  є одночасно ймовірністю того, що випадкова 

величина F  отримає конкретне значення nF . 

Розглянемо статистичний ансамбль Гіббса з N  систем, які в початковий 
момент часу є ідентичними. Через деякий проміжок часу ці системи 
еволюціонують в різні можливі стани: припустимо, що nN  з них потрапили у 

фазовий об’єм n , який займає n -стан. Тоді ймовірність стану( а також 

ймовірність певного значення параметру nFF  ) можна визначити так: 









 

N

n
n N

N
w lim     (4) 
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Припущення, що ймовірності (3) та (4) є абсолютно однаковими має назву 
ергодичної гіпотези і є одним з головних припущень статистичної фізики. 

У класичній статистиці, де спектр станів системи є суцільним 
(безперервним), формули (3) та (4) легко узагальнюються. Припустимо, що  
  ),(,, qpdNqpdt  є відповідно сумарний час та кількість систем ансамблю, які 

потрапляють в елементарний об’єм dpdqd    фазового простору навколо точки 

),( qp . Тоді наведені вище формули для ймовірностей з урахуванням ергодичної 
гіпотези перетворюються у наступні: 

     

















Nt N

qpdN

t

qpdt
qpdw

,
lim

,
lim,  (5) 

Статистичною функцією розподілу є функція:  

 



d

qpdw
qp

,
),(      (6). 

Знаючи розподіл ймовірностей (3-6) неважко знайти середні значення фізичних 
величин (параметрів системи), або їх однозначних функцій )(Fg  . Зокрема у 
випадку дискретного спектру станів маємо для відповідних середніх значень: 

  
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





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FgwFg
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      (7) 

Для безперервного (суцільного) спектру станів сумування по станах замінюємо 
інтегруванням по фазовому простору: 

 

    










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dqpqpFgFg

dqpqpFF
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),(,




 (8) 

Останні формули показують для чого саме нам потрібна статистична функція 
розподілу (7).  

Формули (8) втім  з практичної точки зору є непридатними, адже вони 
передбачають інтегрування по всіх s  координатах та s  імпульсах, які 
характеризують систему, що практично неможливо. Тому зручнішими є формули 
для знаходження середнього з використанням  класичної функції густини 
станів: 

 






g     (9) 

яка дозволяє замінити інтегрування по фазовому простору однократним 
інтегруванням по енергії: 
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     (10) 

Причому інтегрування ведеться по всіх можливих енергіях системи. Формули 
(10) дозволяють практично обчислювати середні значення фізичних величини. 
Які характеризують систему, втім потребують як знання статистичної функції 
розподілу (6), так і функції густини станів (9). 
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 Ізольована система. Мікроканонічний розподіл густини ймовірності. 
Статистичний зміст ентропії. 

У статистичній фізиці, як і у термодинаміці, ізольованою системою називають 
систему, котра має лише внутрішні взаємодії поміж своїми підсистемами, але 
не взаємодіє із зовнішнім середовищем. Такі системи є абстракцією, корисною 
ідеалізацією для таких систем, де внутрішні взаємодії є набагато сильнішими 
за зовнішні. 

Розглянемо ансамбль Гіббса, який складається з систем, що мають однакову 
енергію. Причому рівність енергій  зберігається не лише у початковий момент 
часу (коли системи ансамблю є ідентичними за всіма параметрами, включно з 
енергією), але й надалі, під час незалежної еволюції кожної системи. 
Фактично так вивчається одна система з фіксованою енергією, розглядаються 
лише її  різні можливі мікростани. Саме вимога однаковості енергій систем 
ансамблю у довільний момент часу і є наслідком ізольованості системи. Такий 
ансамбль в статистиці має назву мікроканонічного ансамблю. 

Застосовуючи постулат про рівну ймовірність станів з однаковою енергією до 
нашої ізольованої системи, можна стверджувати, що “всі  мікростани 
ізольованої системи  мають однакову ймовірність, бо мають однакову енергію, 
тобто є виродженими”.  

Фактично цей постулат стверджує, що за великий час спостереження t  

ізольована система проводить однакові проміжки часу t  в кожному з 
доступних для неї мікростанів, бо всі вони однакові, еквівалентні 
енергетично.  У решті мікростанів фазового простору, енергія яких не 
співпадає з фіксованою енергією системи, вона ніколи не перебуватиме. Вони 
є недоступними для ізольованої системи. 

Опишемо поведінку ізольованої системи математично. З постулату 

рівноймовірності випливає, що 0),(  constqp  для тих точок фазового 
простору, які задовольняють умові: 

  0,  qp         (11) 

де 0 - фіксована енергія нашої ізольованої системи. Для точок, фазового 
простору, які не задовольняють умові (11),  статистична функція розподілу 
дорівнює нулю, що відповідає неможливості перебування замкненої системи в 

станах, енергія яких не дорівнює сталій енергії системи 0 . Таким чином, 
маємо: 

   0,   Aqp     (12) 

де A- нормувальна константа, значення якої ми отримаємо дещо пізніше, а 
 0  - є відома імпульсна дельта-функція Дірка з наступними 

властивостями: 
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dxxx , ( площа під кривою функції Дірака завжди дорівнює 

одиниці) 
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III  
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0 (правила інтегрування ) 

Остання з властивостей дельта-функції Дірка робить надзвичайно зручним 
процес інтегрування довільної функції )(xf  у згортці з дельта-функцієй. 
Такий інтеграл негайно береться з властивості ІІІ  залежно від того, чи 
потрапляє точка 0x  в інтервал інтегрування, чи потрапляє на його межі, чи 
не потрапляє в інтервал інтегрування взагалі. Дельта-функція Дірка, умовно 
кажучи, “вирізає” з функції  xf лише її значення в точці 0x . 

Скористуємось властивостями ІІ та ІІІ стосовно статистичної функції 
розподілу (12). З умови нормування статистичної функції розподілу    
маємо: 

        1000  





AgdgAdA  (13) 

де ми перейшли від інтегрування по фазовому простору до інтегрування по 
енергія скориставшись відомим співвідношенням: 

 dgd )(      (14) 

в якому  g - функція густини станів системи.  

З рівняння (13) маємо: 

 0

1

g
A        (15) 

Таким чином усереднення будь-якої фізичної величини, яка залежить від 
енергії, у межах статистичної функції мікроканонічного розподілу: 

   
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        (16) 

є надзвичайно простою процедурою, тому, що: 
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  (17) 

Інакше кажучи, усереднення зводиться до простої формальності:  

       )()( 0 FF        (18) 

Імовірність макростану, який займає  у фазовому просторі область d згідно 
(16) можна записати у вигляді: 

  
 

 
  qpqp
qp dg

g
qpd

g

qp
qpdw ,,

0

0,

0

0 )(),(
,

),( 





 



     (18) 

Функція статистичного розподілу (16) визначає у фазовому просторі деякий 
підпростір постійної енергії:  

  0,,   qpqp      (19) 
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Причому імовірність мікростанів ізольованої системи відмінна від нуля лише 
тоді, коли їх зображувальні точки перебувають у цьому підпросторі постійної 
енергії.   

Реальні розподіли завжди лише нагадують мікроканонічний 
розподіл, бо реальна функція статистичного розподілу не 
є безкінечно вузькими та безкінечно високими «піками», 
як функція мікро канонічного розподілу (16). 

Рівноважний стан системи є для неї найбільш ймовірним 
станом . Саме у рівноважному стані досягають максимумів 
статистичні ваги всіх можливих макростанів. Це не 
означає, що у рівноважному стані  припиняється рух в 
системі. Система безперервно змінює свої мікростани, 
але так, аби при цьому відповідний їм макростан 
залишався стаціонарним. 

Розглянемо дві статистично незалежні підсистеми однієї 
системи: припустимо одна з них знаходиться в одному з своїх макростанів, 
отже, і в одному з 1  його мікростанів, а друга в одному з своїх 

макростанів, якому належить 2  мікростанів. Кількість мікростанів для 
об’єднаної з цих двох підсистем системи, зрозуміло, складає у підсумку 

21    (19) 

Отже, статистична вага системи є величиною мультиплікативною і дорівнює 
добуткові статистичних ваг незалежних підсистем. Проте, логарифм 
статистичної ваги є вже величиною адитивною: 

     21 lnlnln      (20) 

Величина пропорційна логарифму статистичної ваги (термодинамічної 
ймовірності) певного макростану системи:   

)ln(0 TwkS      (21) 

також адитивна і має назву ентропія системи. Тут 38
0 1038.1 

AN

R
k  Дж/К – так 

звана константа Больцмана. Ентропія характеризує ймовірність певного 
макростану системи (чим більша статистична вага  ~Tw  макростану, тим 
більша й його ентропія), отже, вона є функцією стану системи.  

Зрозуміло, що 

   
j

j
j

jT SwkS ln0    (22) 

тому ентропія системи є величиною адитивною. З формули (22) виникає, що 

 
j

jTww     (23) 

Залишена сама по собі будь-яка система прямує до більш рівноважного стану 
(тобто до стану з більшим безладом у розташуванні частинок, більшим 
ступенем хаосу, отже, більш ймовірного), що означає перехід до стану з 
більшою ентропією. В рівноважному стані ентропія системи сягає свого 
максимуму, тому що рівноважний стан просто є найбільш ймовірним станом 
системи.  

Для квантової статистики: 

Людвіг Больцман
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 





squantTw
2

,       (24) 

Таким чином квантовий вираз для ентропії системи: 

 
  0000 )2ln(ln)

2
ln( SSskkkS classsquant 


 





   (24) 

відрізняється від класичного лише константою 

)2ln(00 skS       (23) 

яка впливає тільки на початок відліку ентропії.  

З формули Больцмана (21) випливає і зворотній зв’язок ентропії та 
статистичної ваги: 

)/exp( 0kSwT     (24) 

З якого видно, що найвищу термодинамічну ймовірність має стан з максимальною 
ентропією. 

 
 Квазізамкнена система. Канонічний розподіл Гіббса. Вивід 

канонічного розподілу з мікроканонічного. 

Від розгляду ізольованої системи, яка зберігає енергію 
незмінною, перейдемо до вивчення системи, яка може 
обмінюватися енергією (але не частинками) з оточуючим 
середовищем (термостатом). 

Припустимо, що маємо справу з великою ізольованою 
системою, для якої в цілому придатний статистична 
функція мікроканонічного розподілу. Розділимо цю 
систему на дві нерівні частини: меншу частину 
розглядатимемо як підсистему великої системи, а більшу 
як термостат, в якій вміщено меншу систему. Енергія 
всієї системи може вважатися незмінною константою: 

constE   (1) 

Енергетична взаємодія поміж підсистемою і термостатом int  є слабкою:  

n  int     (2) 

Де n  - енергія підсистеми в її n -му можливому стані. 

Нехтуючи у повному енергетичному балансі енергією взаємодії, для енергії 
системи «термостат+підсистема» можна записати: 

constEE n
T
m      (3) 

Де T
mE  - енергія термостат у його m -стані.  

Нехтування енергією взаємодії поміж підсистемою та термостатом (2) 
дозволяє розглядати їх як дві статистично незалежні частини системи: 
підсистема може знаходитися у будь-якому з  n  своїх станів сумісних з 

енергією n  незалежно від того, в якому з своїх  T
m

T E  станів 
знаходиться термостат, і навпаки. Зміна мікростану підсистеми ніяк не 
впливає на макростан термостату, якщо така зміна не виводить підсистему з 
групи станів з енергією n , тобто з певного макростану системи. І 

Підсистема 

Термостат 
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навпаки, зміна мікростанів термостату ніяк не впливає на макростан 
підсистеми, доки незмінним залишається макростан термостату. 

З іншого боку , відповідно до закону збереження енергії (3) енергії 
підсистеми і термостату пов’язані між собою: якщо підсистема має енергію 

n  тобто перебуває n -му макростані, то термостат може мати лише енергію 
T
mE  і перебувати у m -му макростані. 

Користуючись теоремою множення ймовірностей для складних подій типу «і-і» 
(логічного добутку, або кон’юнкції), для ймовірності складної події,яка 
полягає у тому, що одночасно термостат знаходиться у m -стані, а 
підсистема у своєму n -стані, маємо: 

n
T
m www .    (4) 

Позаяк квантова термодинамічна ймовірність дорівнює статистичній вазі 
відповідного макростану:  

Tw     (5) 

І враховуючи, що поміж звичайною (нормованою на інтервал  1,0 ) 
ймовірністю, яка фігурує у (4), і термодинамічною ймовірністю з (5) є 
пряма пропорційна залежність, з (4,5) маємо: 

   nnn
T

n Econstw   )(    (6)  

Запишемо статистичну вагу термостату у вигляді, який виникає з формули 
Больцмана: 

   







 


0

exp
k

ES
E n

T

n
T     (7) 

 

Де  n
T ES   - ентропія термостату. 

 Завдяки малості підсистеми та її енергії порівняно з енергією всієї 
системи: 

En       (7) 

маємо право розкладати )( n
T ES    в ряд Тейлора навколо точки E  по 

ступеням малого параметру n . Обмежуючись першими факторами такого ряду, 
отримуємо: 

      n

T
T

n
T

E

S
ESES 









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


0

    (8) 

Позначимо як: 

   
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00















E

S

k

T

   (9) 

Причому параметр  , який має розмірність енергії, називатимемо надалі 
«енергетичною температурою». 

З урахуванням (8,9) для (7) маємо: 

  )exp()exp()
)(

exp(
0 



 nn

T

n const
k

ES
E      (10) 
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Підставляючи (10) у (6) отримуємо: 

  )exp()(

 n

nn constw      (11) 

Де константа в (11) є добутком констант у (10) та (6). Цю константу можна 
визначити з умови нормування ймовірності: 

  1)exp( 
n

n
nconst

 
        (12) 

З останнього виразу легко знайти константу 

 
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)exp(
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


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    (13) 

 і записати вираз (11) в остаточному вигляді: 

 
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 
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)exp(

)exp(
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



   (14) 

Розподіл (14) був уперше знайдений в 1901 році Гіббсом для рівноважних 
станів систем у термостаті, і носить назву канонічного розподілу Гіббса. 
Сума Z , яка фігурує у (13,14) береться по всіх можливих мікростанах 
підсистеми і має назву статистичної суми. Видатною особливістю 
канонічного розподілу Гіббса є той факт, що в ньому ніяк не фігурує 
механізм енергетичної взаємодії підсистеми з термостатом. 

За допомогою розподілу (14) можна обчислити середнє значення будь-якої 
фізичної величини F  для підсистеми у термостаті: 

   
   

Z

F
FwF n

n
nn

nn
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



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)exp(






   (15) 

Перехід від квантового розподілу Гіббса до класичного не є складним і 
розглядатиметься у подальшому викладі. 

 Вивід канонічного розподілу з принципу максимуму ентропії. 
Термодинамічний зміст параметрів канонічного розподілу.  

Імовірність стану системи «термостат+підсистема» підкоряється умові (6): 

     nn
T

n Ew  ~    (16) 

Яка, з урахуванням формули Больцмана еквівалентна твердженню: 

    max)( SSESES nn
T      (17) 

Вимога максимальної ймовірності для рівноважного стану еквівалентна 
вимозі максимальної ентропії такого стану. За такої умови маємо: 
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З останнього рівняння неважко бачити, що за умови рівноваги і на вимогу 
принципу максимуму ентропії необхідно аби енергетичні температури 
термостату та підсистеми (9) були однаковими: 

  T      (19) 

Розглянемо підсистему в термостаті, як можна, у свою чергу розглядати як 
об’єднання двох менших, слабо взаємодіючих підсистем 1,2. Кожну з них 
можна розглядати як окрему підсистему в термостаті, а імовірність їх 
станів за формулами канонічних розподілів Гіббса: 
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    (20) 

Якщо розглянути обидві підсистеми як об’єднану підсистему в термостаті, 
то за канонічним розподілом Гіббса: 

)exp(
1





Z

w           (21) 

З іншого боку за законом множення ймовірностей: 
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www     (22) 

Одночасне виконання (21,22) можливо лише за умови: 

21      (23) 

Яка є наслідком вимоги максимуму ентропії для рівноважних станів. Отже, 
лише розподіли типу (20) забезпечують мультиплікативність термодинамічних 
ймовірностей одночасно з адитивністю ентропії та енергії системи та 
умовами термічної рівноваги (19,23). Тому для стислості параметр    
можна називати енергетичною температурою системи.  

Оскільки ентропія є однозначною функцією стану системи, то й енергетична 
температура, яка визначається через похідну від цієї функції по енергії 
також є однозначною функцією енергії та стану системи. Величина 
енергетичної температури   не залежить від кількості речовини в системі 
і не є адитивною (екстенсивною змінною), отже вона є інтенсивним 
параметром системи.  

Нарешті, 0  тобто є величиною суто позитивною.  Дійсно, якщо енергія 
підсистеми може приймати довільні, і як завгодно великі, позитивні 
значення, то ймовірність станів з такими енергіями повинна наближатися до 
нуля. Якби це було не так, то умова нормування (12) не була б виконана. З 
рівнянь (11,14,21) виникає, що близька до нульової ймовірність для станів 
з надзвичайно великими енергіями можлива лише за умови позитивності 
енергетичної температури. 
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На практиці звичайно цікавішою є не залежність статистичної температури 
від енергії системи, а зворотна залежність енергії від температур:  E , 

яка є монотонною функцією від  . Ці залежності можна знайти для 
конкретних простих систем, таких як ідеальний газ, наприклад. 

Статистична температура T  може бути визначена з рівняння (9) такими 
співвідношеннями: 

;;
10

S
T
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Sk












    (24) 

Ця величина також є суто позитивною і очевидно, є тотожною з 
термодинамічною температурою. 

  

 

Статистична фізика: лекція № 9 

Квазізамкнена система із змінним числом частинок. Великий канонічний 
розподіл. Вивід великого канонічного розподілу із принципу максимуму 
ентропії.  

Термодинамічний зміст параметрів великого канонічного розподілу.  

Рівняння стану. Вивід рівняння стану із умови нормування канонічного 
розподілу. 
 

 Квазізамкнена система із змінним числом частинок. Великий 
канонічний розподіл. Вивід великого канонічного розподілу із 
принципу максимуму ентропії. 

Канонічний розподіл Гіббса, отриманий нами на попередній лекції, 
стосується квазізамкнених систем зі змінною енергією, але зі сталою 
кількістю частинок. Послабимо вимоги до системи: припустимо тепер, що 
система може обмінюватися з термостатом також і  частинками. Значить, 
змінюватися (мати флуктуації) можуть як енергія нашої підсистеми, так і 
кількість частинок в ній.  

Обидві ці взаємодії вважаємо одночасними та стохастичними (випадковими). 
Повна система, яка складається з підсистеми та термостату надалі 
вважається ізольованою та рівноважною. Отже, зберігається повна енергія 
E  та повна кількість частинок N  для великої системи, яка  складається з 
підсистеми і термостату.  

Внаслідок припущення про слабкість взаємодії підсистеми та термостату 

nn  ;     (1) 

маємо відповідні умови адитивності для енергії та кількості частинок: 

nNNEΕ TT  ;    (2) 

де    nNE TT ,;,  - відповідно енергія і кількість частинок у термостаті та 
підсистемі. 

Ймовірність певного макростану підсистеми, котрий тепер характеризується 
двома параметрами  n, , так само повинна бути пропорційна добутку 
статистичних ваг підсистеми та термостату: 
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     nNEnconstnw T  ,,,     (3) 

Константу в (3) так само можна знайти з умови нормування суми 
ймовірностей на одиницю: 
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Статистична сума на разі є подвійною: сумувати треба не лише по всім 
можливим енергетичним станам підсистеми, але і по всім можливим 
кількостям частинок в ній. Остаточно, для ймовірності макростану 
підсистеми маємо: 
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Запишемо ентропію термостату у наступному вигляді: 

    nNEknNES TT  ,ln, 0     (6) 

Скористуємось малістю енергії та кількості частинок в підсистемі і 
розкладемо функцію (6) у подвійний ряд Тейлора по малим параметрам 
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Де, як відомо з попередньої лекції: 
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тоді як іншу похідну з (7) можна записати у вигляді: 
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де під новим параметром   (хімічним потенціалом) мають на увазі величину 


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
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
n

   (10) 

яка з точністю до знака дає середню енергію, яка виноситься (або 
вноситься) в підсистему однією частинкою. Слід підкреслити, що у виразах 
(9,10) йдеться саме про середню енергію, яка припадає на одну частинку. 

Перепишемо, (7) з урахуванням (8,9): 
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Звідси: 

)exp(
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n
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Підставляючи останній вираз, у розподіл (5) матимемо: 
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Вираз (13) і є великим канонічним розподілом ймовірностей Гіббса. 

Позначимо через 
Tk0


 наступну функцію: 
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Тоді великий канонічний розподіл Гіббса можна записанти компактніше: 
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Якщо йдеться про систему з безперервним спектром станів (не дискретним), 
то великий канонічний розподіл легко узагальнити й на такий випадок 
класичних систем випадок: 

  

Класична статистична функція великого канонічного розподілу отримує 
вигляд: 
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а під   треба розуміти наступний вираз: 









  

n

d
TkTk

n
Tk )exp()exp(ln

00
0


   (17) 

(тобто подвійна сума виразів (4,14) перетворюється на суму по кількості 
частинок та інтеграл по фазовому простору. 

Неважко побачити, що за умови 

constn      (18) 

великий канонічний розподіл Гіббса переходить в канонічний розподіл 
Гіббса. Це природно, бо умова (18) фактично замикає підсистему щодо 
обміну частинками з термостатом, дозволяючи лише енергетичний обмін. 

 

 Термодинамічний зміст параметрів великого канонічного розподілу.  

Як це вже було вказано у попередній лекції, параметр 

0
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

T

S


   (19) 

не є адитивним (екстенсивним)  і однаковий як в системі загалом, так і в 
кожній з її підсистем, якщо вони перебувають у рівноважному стані.  

Термодинамічний параметр, який ми ввели у (9,10), тобто хімічний 
потенціал: 
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
    (20) 

також не є адитивною (екстенсивною) величиною, і також у рівноважному 
стані є однаковим і для системи загалом і для кожної з її підсистем: 

T     (21) 

Отже, рівність температур та хімічних потенціалів для всіх підсистем 
системи – є двома необхідними (проте, не достатніми) умовами рівноваги в 
системі. 

Згідно з розподілом (15): 

   nnw nn    ,,ln    (22) 

Просумуємо ліві та праві частини (23) по всіх енергіях та кількостях 
частинок всіх підсистем системи: 
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Рівняння (24) виконується лише при умові, що коефіцієнти  , , по-перше, 
є однаковими для всіх підсистем, а по-друге мають такі значення: 

TkTk 00

;
1      (24) 

Звідси виникає, що температура і хімічний потенціал є інтенсивними 
термодинамічними параметрами всієї рівноважної системи. 

 

 Рівняння стану. Вивід рівняння стану із умови нормування 
канонічного розподілу. 

Розглянемо ідеальний газ в посудині об’єму V . Оскільки така підсистема 
може обмінюватися з оточуючим середовищем лише енергією (крізь стінки 
посудини), але не частинками, до неї застосовуємо канонічний розподіл 
Гіббса.  

Кожна молекула є незалежною статистично підсистемою, отже кількість 
ступенів свободи системи дорівнює Ns 3 . Статистична вага кожного 
макростану підсистеми (молекули), в такому разі однакова і дорівнює 
одиниці: 

  1     (25) 

Повна енергія ідеального газу складається лише з суми кінетичних енергій 
його N  частинок: 
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Обчислимо статистичний інтеграл для ідеального газу: 
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Оскільки всі молекули незалежні одна від одної, операції інтегрування та 
добутку по кількості молекул можна поміняти місцями. Очевидно також, що 
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операція добутку по всім молекулам зводиться просто до піднесення 
відповідних інтегралів у ступінь N : 
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Перший інтеграл в (28) є просто об’ємом газу V . Другий інтеграл 
зводиться до добутку трьох однакових інтегралів Пуасона вигляду: 
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   (29) 

Отже, остаточно для статистичного інтегралу ідеального газу отримуємо 
просту формулу: 
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У згоді з виголошеним вище статистичний інтеграл є N -м ступенем 
відповідної величини для однієї частинки: 
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Користуючись (14) для величини   отримаємо вираз: 
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Набір природних незалежних змінних  NVT ,,  дозволяє ідентифікувати   як 
термодинамічний потенціал ідеального газу: а саме – вільну енергію 
Гельмгольца: FTSU  . В такому разі для тиску в ідеальному газі 
отримуємо: 
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Останній вираз є вочевидь рівнянням стану для ідеального газу Мендєлєєва-
Клапейрона.  
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Статистична фізика: лекція № 10 
Обчислення термодинамічних потенціалів за допомогою 
канонічного розподілу. Термодинамічні величини як середні по 
канонічному розподілу. Знаходження термодинамічних потенціалів 
через статистичну суму.  
Обчислення внутрішньої енергії ідеального газу за допомогою 
статистичного методу. Вивід рівняння Гіббса-Гельмгольца із умови 
нормування канонічного розподілу.  
Статистичний зміст ентропії 
Статистичний зміст законів термодинаміки. Перше начало 
термодинаміки. Теплота і робота, їх мікроскопічний зміст. Вивід із 
умови нормування канонічного розподілу об’єднаного запису 
першого і другого начал термодинаміки. Статистичний характер 
другого начала термодинаміки. Статистичне обґрунтування 
третього начала термодинаміки. Теплоємність. 
 

 Обчислення термодинамічних потенціалів за допомогою 
канонічного розподілу. Термодинамічні величини як середні по 
канонічному розподілу. Знаходження термодинамічних 
потенціалів через статистичну суму. 

 

Розглянемо ансамбль тотожних в початковий момент 
часу газових систем, які складаються з однакового 
числа взаємодіючих частинок11. На рисункові кожна з 
таких систем ансамблю зображена у вигляді 
скриньки. В стані з енергією n , наприклад, 

перебуває nM  «скриньок» (систем — учасників 

ансамблю), тоді як в стані m  перебуває mM  
скриньок і так далі. Позаяк взаємодії поміж 
скриньками (не поміж частинками газу, а поміж 
системами!) немає – кожна з них є статистично 

незалежною системою. 

Припустимо, що кожна з таких систем взаємодіє з термостатом лише 
енергетично, отже, описується канонічним розподілом Гіббса. Тоді 
ймовірність спостерігати певну газову систему в стані з енергією n  
наступна: 
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де енергетична температура Tk0 . 

Якщо M  є повною кількістю скриньок (систем), то маємо: 

MwM nn     (2) 

                                                 
11 Що вказує на неідеальність газових систем, які розглядаються – в  ідеальному газі 
взаємодія частинок на відстані відсутня. 
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Нормувальна константа Z  у (1) має назву статистичної суми і визначається 
сумуванням по всім можливим станам окремої системи: 

)exp( 
n

nZ



   (3) 

Статистична сума залежить від енергетичної температури   і повної 
кількості частинок у системі N . Якщо енергія стану n  залежить від 
зовнішніх сил, то і статистична сума залежатиме від цих сил. Крім того, 
статистична сума може залежати від об’єму системи, адже n -стан системи, 
взагалі кажучи, може визначатися повним об’ємом системи. 

Ансамбль тотожних систем, які знаходяться в рівновазі з термостатом і 
підкоряються розподілу ймовірностей (1) отримав назву канонічного 
ансамблю Гіббса. За допомогою розподілу (1) можна знаходити середні по 
ансамблю фізичні параметри систем. Зокрема, для статистичної середньої 
енергії системи маємо вираз: 
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Якщо центр мас кожної системи залишається нерухомим, 
тобто система не рухається як ціле, формула (4) дає 
вираз для внутрішньої енергії системи. 

Зв’язок поміж статистичними середніми величинами та 
термодинамічними функціям (однією з яких є також 
внутрішня енергія системи) можна встановити наступним 
способом. Зауважимо, що вираз (4) можна отримати 

диференціюванням  Zln  по 
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. Дійсно: 
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Згадуючи, що ),( VTZ  є функцією температури T  та повного об’єму V , 

знаходимо повний диференціал від величини ZTkZ lnln 0 : 
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За визначенням такий термодинамічний потенціал є вільною енергією 
Гельмгольца: 

TSUF     (8) 

де PSU ,,  - відповідно внутрішня енергія, 
ентропія та тиск системи.  

Знаходимо повний диференціал (8) (див. 
таблицю в лекції    № 5): 
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Порівнюючи вирази (6) та (9) визначаємо співвідношення поміж статистичною 
сумою системи та її термодинамічними функціями: 

… … 
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які є характерними для канонічного ансамблю Гіббса. 

 

 Обчислення внутрішньої енергії ідеального газу за допомогою 
статистичного методу. Вивід рівняння Гіббса-Гельмгольца із умови 
нормування канонічного розподілу.  

Застосуємо результат попереднього параграфу до ідеального газу, 
статистичну суму якого було знайдено в лекції №13: 

  2

3

02
N

N TmkVZ     (11) 

Звідки для логарифму статистичної суми можна записати: 







  )2ln(

2

3
ln

2

3
lnln 0mkTVNZ     (12) 

Підставляючи (12) у вираз (10) і диференціюючи по температурі, маємо для 
внутрішньої енергії ідеального газу вираз: 
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TkU

V
0

2
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3ln
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








    (13) 

Звідки видно, що внутрішня енергія пропорційна кількості частинок і 
температурі ідеального газу.  Вираз (13) знайдено для одноатомного 
ідеального газу, молекула якого має лише три ступеня свободи ( )3i . Для 
двоатомних та багатоатомних молекул кількість ступенів свободи може бути 
більшою і  дорівнювати 6,5  ii  відповідно. Узагальнення (13) на випадок 
багатоатомних молекул елементарне: 

TNk
i

U 02
   6,5,3i   (14) 

і не змінює якісно попередніх висновків. 

Рівняння Гіббса-Гельмгольца пов’язують поміж собою різні термодинамічні 
потенціали (див. лекцію №5). Зокрема, можна пов’язати поміж собою 
внутрішню енергію U  та вільну енергію Гельмголца F . Користуючись (10) 
візьмемо похідну від вільної енергії по температурі при сталому об’ємі: 
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Звідки, з урахуванням (8) отримуємо зв’язок: 
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Який є одним з рівнянь Гіббса-Гельмгольца, отриманих у лекції №5 з 
діаграми Радушкевича. 

 

 Статистичний зміст ентропії. 

Розглянемо систему тотожних частинок з дискретним енергетичним спектром 
( ,...,...,, 21 n ). Якщо спектр не є дискретним, то його завжди можна розбити 
на невеличкі інтервали енергій і кожний інтервал ототожнити з певним 
дискретним рівнем енергії. Поставимо питання так: якою є ймовірність 

 nn ww   того, що частинка системи знаходиться на певному енергетичному 

рівні n  ? 

Припустимо, що кількість частинок в системі N  є дуже великою. Нехай 

nn  — кількість частинок в n -стані, якому відповідає енергія n . Тоді: 


n

nnN    (17) 

Система чисел nn  завдає розподіл частинок по енергетичним рівням, 

відношення n
n w

N

n
  - ймовірність того, що конкретна частинка має енергію 

n , адже всі частинки є тотожними. Середня енергія частинки визначається 
виразом: 


n

nnn
N

 1
   (18) 

Додатково припускаємо ще наступне: 

 На nn  не накладається жодних обмежень, окрім співвідношень (17,18); 

 Перестановка частинок, які знаходяться на різних енергетичних 
рівнях, змінює конфігурацію системи, у той час як перестановка 
частинок, які знаходяться на одному і тому ж енергетичному рівні, 
не дає нових конфігурацій системи; 

За таких умов число різних конфігурацій системи з N  частинок для 
певного набору чисел nn  дорівнює величині: 




n
nn

N

!

!
   (19) 

Чисельник (19) дає кількість перестановок поміж всіма частинками системи, 
тоді як знаменник є добутком кількостей перестановок частинок в межах 
одного енергетичного рівня. Таким чином, число   показує кількість лише 
тих перестановок, які змінюють конфігурацію системи. Іншими словами, 
число   дорівнює кількості способів розподілу N  частинок по 
енергетичним рівням. Якщо справедливе співвідношення (19) кажуть, що 
система підкорюється статистиці Больцмана. 

Набір чисел nn , за якого величина max  сягає максимуму відповідає 
найбільш ймовірному розподілу. Для знаходження такого розподілу 
скористуємось наближеною формулою Стірлінга: 

 

nnnn  ln!ln    (20) 
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Для великих n  ця формула є досить точною (див. таблицю), 

  

n   !ln n  nnn  ln  

10 15,1 13,0 

50 148,5 145,6 

100 363,7 360,5 

500 2611,3 2607,3 

1000 5912,1 5907,7 

 

вже для  1000n  відносна похибка складає менше , ніж  0,1%. 

Застосовуючи формулу Стірлінга, до співвідношення (19) отримуємо: 

  
n

nnn nnnNNN lnlnln    (20) 

Знайдемо варіацію ln  по nn  за додаткових умов (17,18), які еквівалентні 
наступним: 
















0

0

n
nn

n
n

n

n




   (21) 

Варіація ln  по nn  дорівнює: 

    n
n

nn
n

nn nnnn ln1lnln       (22) 

Для урахування умов (21) помножимо ці співвідношення на Лагранжеві 
невизначені множники ( ,A ) відповідно і складемо результати з варіацією 
(22): 

  0ln  nn
n

n nAn     (23) 

Через те що варіації є довільними: 0nn , в (23) в нуль обертається 
вираз у круглих дужках. Звідси маємо: 












Z
NAn

An

N
nn

nn

)exp(
)exp()exp(

ln




   (24) 

де 

)exp( ANZ      (25) 

З іншого боку, константу Z  можна визначити з умови, аналогічній (2): 

 




n
n

n
nn NNwn

)/exp(

)/exp(




   (26) 

Звідки виникає, що Z  є статистичною сумою: 
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)exp( 
n

nZ



    (27) 

а також:  /1 .  

Важливо зауважити, що  

  n
n

nn
n

n nnconstnnconst ln1lnln      (28) 

де, нехтуючи одиницею порівняно з nnln  враховують нерівність: 1ln nn . 

З точністю до константи ( NNconst ln ) величина ln  визначається другим 
фактором у (28), тобто розподілом частинок по енергетичним рівням, 
причому максимум ln  забезпечується канонічним розподілом Гіббса 
(24,26). 

З викладеного вище зрозуміло, що  величина   за фізичним змістом є 
статистичною вагою, або термодинамічною ймовірністю, макростану системи. 
За таких умов множення ln  на сталу Больцмана 0k  повинно давати ентропію 
системи, тому з точністю до константи маємо: 

n
n

n nnkkS lnln 00     (29) 

Максимальну ентропію, отже й імовірності стану системи, забезпечує 
канонічний розподіл Гіббса (26). 

 
 Статистичний зміст законів термодинаміки. Вивід із умови нормування 

канонічного розподілу об’єднаного запису першого і другого начал 
термодинаміки. 

Вираз для внутрішньої енергії квазізамкненої системи, як було показано у 
попередній лекції, може бути записано через статистичну суму 
(нормувальний множник канонічного розподілу) у такому вигляді: 








Z

U
ln2    (1) 

де Tk0  - енергетична температура системи. З формули (1) виникає, що 
для знаходження внутрішньої енергії системи достатньо знати її 
статистичну суму Z . 

Стан макроскопічної системи, зокрема її внутрішня енергія, залежать від 
температури термостату  . В стані термодинамічної рівноваги температури 
системи дорівнює температурі термостату, отже, можна казати про 
залежність стану системи від власної температури. Внутрішня енергія 
системи має важливу властивість адитивності: енергія складної системи є 
сумою внутрішніх енергій її частин12. 

Окрім температури, стан рівноважної системи залежить також від зовнішніх 
умов. Ці умови визначаються дією зовнішніх силових полів на систему. 
Зовнішні умови можна характеризувати завданням деяких величин, які мають 
назву зовнішніх параметрів. Рівні енергії системи, таким чином, залежать 
не лише від властивостей самої системи, але також від значень зовнішніх 
параметрів, сукупність яких тут позначимо символом   . Щоби підкреслити 

                                                 
12 Якщо нехтувати енергіями взаємодії ij

int
 поміж цими частинами порівняно з їх 

власними енергіями  ji
ij  ,min
int
 . 
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це, часом будемо писати   n , пам’ятаючи втім, що значення енергетичних 

рівнів залежать не лише від   , а й від властивостей самої системи. 
Виходячи з виразів для внутрішньої енергії (1), а також з виразів для 
ентропії отриманих на минулій лекції, можна в принципі отримати такий 
вигляд основного рівняння термодинаміки, в якому фігуруватиме лише 
статистична сума системи, її температура та зовнішні параметри. Отримання 
такого рівняння та статистичне теоретичне  обґрунтування емпіричних 
законів термодинаміки є метою цієї лекції. 

 

 Перше начало термодинаміки. Теплота і робота, їх мікроскопічний 
зміст. Вивід із умови нормування канонічного розподілу об’єднаного 
запису першого і другого начал термодинаміки (основного 
термодинамічного рівняння). 

Розглянемо зміну (варіацію) одного з припустимих енергетичних рівнів 
системи n  за рахунок безкінечно малої варіації (зміни)   деякого 
зовнішнього параметру системи. Для початку розглянемо таку зміну 
зовнішніх параметрів, яка не впливає на розподіл ймовірностей різних 
станів системи ( constwn  ). Інакше кажучи, при зміні зовнішнього 
параметру система не переходить з одного стану в інший. Тоді маємо: 



 











nw

n
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n f
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











 можна розглядати як взяту з оберненим знаком 

узагальнену силу, яка діє на систему, тоді (2) отримає вигляд: 

 nn f    (3) 

Для знаходження варіації внутрішньої енергії мусимо знайти середнє 
значення змін енергії по всім енергетичним рівням системи. За звичайними 
правилами усереднення маємо: 

 







 

nw

n
n

nn
n

n wfwU    (4) 

Де через 
nwn

nnwf 







  позначена середня сила, яка діє на всю систему 

внаслідок малої зміни зовнішнього параметру  . Величина    являє 

собою елементарну роботу A , яка здійснюється над системою внаслідок 
малої зміни зовнішнього параметру  .  

Зрозуміло, що  A  не презентує повної можливої варіації енергії 
системи і е є повним диференціалом будь-якого виразу. Дійсно, узагальнена 
сила  за певної структури системи є функцією зовнішнього параметру   і 
температури системи, отже: 

      ,
nwU    (5) 

Зміна внутрішньої енергії при зміні зовнішнього параметру в ширших межах 
(від 1  до 2 ) дається інтегралом виду: 
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 





2

1

,12A    (6) 

Значення інтегралу в останній формулі, вочевидь, залежатиме від шляху 
інтегрування, тобто від характеру переходу від 1  до 2 . 

Розглянемо далі рівноважний процес в системі, під час якого може 
змінюватися як зовнішній параметр   , так і розподіл ймовірностей для 
станів системи nw . В такому разі: 
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   (7) 

Першу складову у правій частині (7) ми вивчили вище: це елементарна 
робота A  здійснена над системою. 

Друга складова у правій частині (7) презентує ту частину варіації (зміни) 
внутрішньої енергії системи, яка не пов’язана зі зміною зовнішніх 
параметрів. Цю частину зміни внутрішньої енергії, яка зумовлена прямою 
передачею енергії від частинок системи до частинок термостату, 
називатимемо кількістю тепла, підведеного до системи і позначатимемо як 

q . Тоді (7) отримає вигляд першого закону термодинаміки: 

  qAqU    (8) 

Статистичний підхід дозволяє розкрити мікроскопічний (молекулярний) зміст 
величин, які входять у (8), а для простих систем також дає можливості їх 
теоретичних розрахунків. 

Для з’ясування молекулярного (мікроскопічного) змісту кількості теплоти 
розглянемо довільну незамкнену систему, в якій відбувається 
квазістатичний процес. Для квазістатичного (рівноважного) процесу можна 
записати з (7): 
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З очевидної тотожності13: 
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Виникає наступна рівність: 
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Звідки, після поділу на Z , знаходимо: 

                                                 
13 Варіація береться за двома змінними: n  - енергія рівня та   - температура.  
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Перший і другий чинники у правій частині (12) можна відобразити як : 
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З урахуванням (13) маємо з (9,12) наступний вираз: 
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Остаточно можна дійти наступного важливого висновку — якщо з 
макроскопічною системою відбувається деякий рівноважний (квазістатичний) 
процес, в ході якого вона весь час залишається в рівновазі з термостатом, 
то зміна (варіація) її енергії може бути представлена у вигляді: 
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Рівняння (15) з урахуванням (1) можна переписати у вигляді: 
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  (16) 

Формули (15,16) з одного боку показують зміну внутрішньої енергії системи 
як суму кількості теплоти та роботи, тобто є математичними виразами для 
першого закону термодинаміки, а з іншого боку, вони є статистичним 
обґрунтуванням цього закону, пов’язуючи кількість теплоти зі статистичною 
сумою системи, а роботу зі зміною зовнішніх параметрів та узагальненими 
термодинамічними силами. Крім того, формула (16) передбачає статистичну 
інтерпретацію поняття внутрішньої енергії як середньостатистичної енергії 
системи. 

Формула (15)також показує, що під час рівноважних процесів кількість 
тепла, отриманого, або відданого системою, може бути представлено у 
вигляді: 
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Напевне, що S  презентує повний диференціал від такого виразу: 
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   (18) 

де const  має довільне значення. 

Функція (18) отримала в статистичній фізиці та термодинаміці назву 
ентропія. За допомогою ентропії S  зміна енергії системи під час 
рівноважного процесу може бути записана у такому вигляді: 
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  SU    (19) 

Яке має назву основного термодинамічного рівняння і було отримано тут 
чисто статистичним шляхом. 

 

 Статистичний характер другого начала термодинаміки. 

Основне рівняння термодинаміки (19) можна переписати у вигляді: 
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Значить внутрішню енергію системи  ,SU  можна розглядати як функцію двох 

природних змінних – ентропії та зовнішнього параметру  (найчастіше 

V , об’єм системи). При цьому з умови 0
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 виникає, що 

внутрішня енергія є монотонною функцією ентропії системи. 

Величина U  є повним диференціалом, на відміну від роботи A  та 
кількості теплоти q .  

Отже, інтеграл по замкненому будь-якому замкненому циклу від неї дорівнює 
нулю: 

  0U    (21) 

Формула (17) показує, що відношення S
q 



  також є повним диференціалом, 

отже: 
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Згідно з (18) для обчислення ентропії системи з точністю до константи 
необхідно знати лише статистичну суму системи Z . Константа, про яку 
йдеться не залежить ані від температури системи, ані від інших її 
параметрів. Цю константу можна покласти нульовою, тим самим обираючи 
певний рівень відліку ентропії: 
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Перетворимо останній вираз, користуючись тим, що в стані термодинамічної 
рівноваги велика система більшу частину часу перебуває в станах з 
енергіями близькими до середньої енергії U . За таких умов наближений 
вираз для статистичної суми є такий: 
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У статистичній сумі (24) ми зберегли лише найбільшу її складову. 

Підставляючи (24) у (23) отримуємо: 

  US  ln     (25) 

Ентропія макроскопічної замкненої системи дорівнює логарифму її 
статистичної ваги ( термодинамічної ймовірності), що з точністю до 
множника 0k  співпадає з формулою Больцмана, яка є основою статистичної 
інтерпретації термодинаміки. 

Скористуємось формулою Больцмана у вигляді (25) для аналізу поведінки в 
часі замкненої системи. Припустимо така система спочатку знаходиться у 
деякому нерівноважному стані, а 1w  - термодинамічна ймовірність 
початкового стану. З часом замкнена система неминуче перейде у стан 
статистичної рівноваги. Цей перехід відбувається за рахунок слабкої, але 
завжди існуючої взаємодії поміж частинами системи. За визначенням 2w  - 
ймовірність рівноважного стану найвищою можливою, отже, є вищою і від 
ймовірності початкового стану: 12 ww   . 

З формули (25) виникає, що за умов переходу системи з нерівноважного 
стану в рівноважний її ентропія зростає. Отже, зростання ентропії 
замкненої системи пов’язане з її переходом з менш ймовірних станів у 
більш ймовірні. Найбільше значення ентропія отримує у рівноважному стані. 
В загальному випадку маємо право казати, що найбільш ймовірними в 
замкненій системі є процеси під час яких ентропія системи зростає, або 
залишається незмінною: 

0dS    (26) 

Де знак нерівності стосується процесів, які наближають систему до стану 
рівноваги, а знак рівності до процесів, які мають місце в рівноважній 
системі. 

Втім з попередніх лекцій вже відомо, що для макроскопічних систем 
імовірнісні прогнози є практично достовірними, причому тим дужче, чим 
більшою є система. Тому вираз (26) є фактично статистичною інтерпретацією 
другого закону термодинаміки. 

 Статистичне обґрунтування третього начала термодинаміки. 

Розглянемо поведінку деякої макроскопічної системи при дуже низьких 
температурах.Вважатимемо, що система є в рівновазі з внутрішньою енергією 

U , так що її ентропію можна задавати формулою Больцмана у вигляді: 

  UkS  ln0    (27) 

Припустимо, що можливим енергетичними рівнями системи є рівні такого 
набору: 

  ,...,...,, 10 n     (28) 

Де 0  - мінімальна можлива енергія системи (так званий основний 

енергетичний рівень), а n  - деякий її збуджений енергетичний рівень.  
Рівні енергії швидко зближуються з ростом збудження, втім важливо лише 
те, що відстань поміж основним та першим збудженим енергетичним рівнем 

01    є хоча і малою, та все ж скінченою величиною. 

Якщо температура система є дуже низькою так що теплова енергія Tk0  
може стати значно меншою від зазначеної вище енергетичної щілини: 
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01      (29) 

Тоді теплові збудження системи недостатні для збудження системи з 
основного стану. Значить, система повинна знаходитися в основному стані 

0  практично весь час спостереження. Внутрішня енергія в такому випадку 
дорівнює енергії цього стану: 

0U    (30) 

і, таким чином, не залежить від температури, якщо виконується умова (29). 
Звідси виникає, що теплоємність системи при сталому об’ємі є нульовою за 
умови (29): 
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За формулою Больцмана ентропія такої системи повинна бути: 

  000 ln  kS    (32) 

У квантовій механіці відомою є теорема про невиродженість основного стану 
системи, або твердження, що 

  10      (33) 

Звідси ентропія системи за виконання умов (29) мусить наближатися до 
нуля, адже   0ln 0   : 

0lim 0 TS    (34) 

У чому і полягає зміст третього закону термодинаміки, або інакше, 
теплової теореми Нернста. 

Необхідно підкреслити, що третій закон термодинаміки безпосередньо 
пов’язаний з квантовим характером системи. Якби система, яку розглядали 
вище, підкорялася б законам класичної механіки, то її енергія змінювалася 
б безперервно. Тоді якою б низькою не була температура T , енергія 
теплового збудження Tk0  була б безкінечно великою відносно до 
безкінечно малої відстані поміж «енергетичним  рівнями» класичної 
системи. Обмеженому інтервалу енергії Tk0  відповідало б безкінечна 

кількість можливих станів   . Отже, згідно з формулою Больцмана 
ентропія залишалася б ненульовою при як завгодно малій температурі. 
Головний зміст третього закону термодинаміки полягає навіть не в тому, що 
ентропія є нульовою при нульовій температурі, а у тому, що третій закон 
термодинаміки встановлює її незалежність від параметрів системи за умови  

0T . Якщо ентропія є константою за такої умови, то вже цю константу 
можна завжди обрати нульовою, фіксуючи вибір начала її відліку. 
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Статистична фізика: лекція № 11 
 
Ідеальний газ. Статистичний інтеграл для ідеального газу. 
Обчислення термодинамічних функцій класичного ідеального газу.  

Розподіл Максвелла- Больцмана. Молекула ідеального газу як 
квазінезалежна підсистема. Розподіл молекул за імпульсами і 
координатами. Розподіл молекул за швидкостями і енергіями.  

Розподіл молекул за висотою у полі сил тяжіння. 

Реальний газ. Врахування взаємодії між молекулами.Статистичний 
інтеграл для реального газу.  
Рівняння стану реального одноатомного газу 
 
 

 Ідеальний газ. Статистичний інтеграл для ідеального газу. 
Обчислення термодинамічних функцій класичного ідеального газу. 

Статистичний інтеграл ідеального газу отриманий у лекції № 13 у 
класичному наближенні: 
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Квантовий вираз для статистичної суми, по перше, мусить мати додатковий 

множник Ns 3)2()2(     , який враховує квантування фазового простору 
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(     ds
2 ), і по-друге, множник 

!

1

N
, який враховує принцип тотожності 

частинок ідеального газу, стверджуючи що жодна з !N  можливих 
перестановок місцями тотожних частинок не дає нового мікростану системи, 
отже й внеску в статистичну вагу макростастану. З урахуванням цих 
міркувань статистична сума квантового ідеального газу має такий вираз: 

  !2

)2(
3

2

3

0

N

TmkV
Z N

N
N




    (2Термодинамічні функції класичного ідеального газу 

частково знайдені в лекції №14. Стосовно термодинамічних функції 
квантового ідеального газу то їх неважко отримати зі статистичного 
інтегралу (2). Результати обчислень подані у таблиці. 

Експериментальні теплоємності реальних газів непогано співпадають з 
теоретичними передбаченими значенням таблиці для ідеального газу. 

 

 Розподіл Максвелла- Больцмана. Молекула ідеального газу як 
квазінезалежна підсистема. Розподіл молекул за імпульсами і 
координатами. Розподіл молекул за швидкостями і енергіями. 

На практиці часто мають справу з газом, який знаходиться у зовнішньому 
силовому полі, наприклад в полі сил тяжіння. Розглянемо квантовий 
ідеальний газ у силовому полі. У такому полі кожна молекула має повну 
енергію виду: 

),,(
2

2

zyxu
m

p
    (3) 

Де Km

p 
2

2

- кінетична енергія частинки, а  zyxu ,,  - потенціальна енергіяю 

у зовнішньому силовому полі. 

Підставляючи останній вираз у канонічний розподіл Гіббса для окремої 
молекули ідеального газу, маємо: 
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   (4) 

Де статистичний інтеграл z  береться у розрахунку на одну молекулу: 
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   (5) 

dzdydxdV   - елемент об’єму системи. 

Тому нормований на одиницю канонічний  розподіл Гіббса ймовірностей для 
молекули ідеального газу отримує вигляд: 
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Отриманий розподіл (6) має назву 
розподілу Максвела-Больцмана. 

Перший його фактор (множник) – є 
розподілом Максвела, яке характеризує 
розподіл ймовірностей по компонентам 
імпульсу.  

Другий множник (фактор) залежить лише 
від координат і визначається виглядом 
потенціальної енергії  zyxu ,,  у 
зовнішньому полі сил. Він дає 
ймовірність знаходження молекули в 
елементі об’єму dV . 

На підставі теореми про множення 
ймовірностей розподіл Максвела-Больцмана 
можна розглядати як добуток ймовірностей 

двох статистично незалежних подій: ймовірності певного значення імпульсу 
молекули (перший фактор) та ймовірності її знаходження в певному елементі 
об’єму (другий фактор). Таким чином, ймовірність певного значення 
імпульсу для молекули абсолютно не залежить від її положення в просторі і 
навпаки. Кожний з цих двох незалежних розподілів окремо нормований на 
одиницю. 

Розглянемо кожний з них детальніше.  Запишемо фактор pdw  у вигляді: 

 
zyx ppp
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p dwdwdw
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exp(
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   (7) 

В такому вигляді розподіл по імпульсам є добутком трьох статистично 
незалежних розподілів по трьом компонентам імпульсу молекули, кожен з 
яких має вигляд: 
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    (8) 

Таким чином імовірність для молекули мати компоненту імпульсу в певному 
інтервалі  iii dppp ,  абсолютно не залежить від того якими є інші 
компоненти імпульсу. Отже розподіл Максвела є ізотропним, тобто 
ймовірність різних напрямів вектору імпульсу молекули є однаковою.  

Розподіл (8) можна переписати у вигляді розподілу молекул по значенням 
кінетичної енергії: 

Tk
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
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 (9) 

Або через модулі швидкості молекули: 

v

)(vf  

4321 TTTT   
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dvvf
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   (10) 

Де  2vf  - відома функція розподілу Максвелла по швидкостям. Вигляд цієї 
функції для різних температур показаний на рисункові. Як видно з рисунку 
з підвищенням температури розподіл максвела стаж нижчим, ширшим і його 

максимум зміщується в область більших швидкостей. Функція  2vf  має 
типовий вигляд диференціальної функції розподілу ймовірностей, подібно до 
тої, яка вивчалася в лекції №9. 

 

 Розподіл молекул за висотою у полі сил тяжіння. 

Розглянемо більш детально розподіл Больцмана для частинок газу у полі сил 
тяжіння. Спрямуємо вісь z  вертикально вважаючи що 0z  на рівні моря. 
Тоді потенціальна енергія газової молекули може бути записана у вигляді: 

mgzu     (11) 

У площинах constz   молекули розподілені рівномірно, і тому варто 
знаходити лише залежність ймовірності від координати z . Вона має вигляд: 









0 0

0

)exp(

)exp(

dz
Tk

mgz

dz
Tk

mgz

dwz    (12) 

Упроваджуючи замість розподілу ймовірностей середню кількість частинок 

zdn  в одиниці об’єму на висоті z , можна переписати (12) у іншому 
вигляді: 


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
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
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



dz
Tk

mgz
ndn
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dn
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z

z
z

)exp(
0

0

0    (13) 

Де 0n  - концентрація частинок на рівні моря.  

Рисунок, який ілюструє розподіл Больцмана, свідчить що кількість частинок 
частинок помітно зменшується з висотою. Іншими словами, більшість 
частинок концентрується там, де менша потенціальна енергія. Формула (13) 
теж свідчить, що концентрація експоненціально зменшується з висотою. При 
цьому зменшення є тим швидшим, чим більшою є маса молекули m . У випадку  
ідеального газу, інтегруючи (13), умножаючи розподіл Больцмана (13) на 

Tk0 , і враховуючи, що для тиску ідеального газу маємо: 

TnkP 0    (14) 

можна отримати залежність тиску ідеального газу від висоти:: 

  )exp(
0

0 Tk

mgz
PzP     (15) 

Остання формула має назву барометричної формули. 
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 Реальний газ. Врахування взаємодії між молекулами. 

Рівняння стану для ідеального газу часто може бути застосоване і для 
реальних газів із досить прийнятною точністю. Втім таке наближення може 
виявитися недостатнім у деяких умовах, які розглядатимуться в цій лекції. 

Для спрощення обчислень розглядатимемо спочатку одноатомний газ ( 3i ). 
Рух його частинок розглядатимемо у межах класичної механіки, отже повна 
енергія має вигляд: 

  u
m

p
qp

N

n

n 
1

2

2
,    (1) 

Де індекс Nn ,..,2,1  нумерує молекули газу, u  - енергія взаємодії 
молекул, яка для одноатомного газу є функцією взамної відстані поміж 
молекулами, npm,  - відповідно маса та імпульс молекули. 

Надалі ми припускаємо лише, що газ не настільки густий, аби реально 
спостерігалися якісь інші форми зіткнень (колізій) поміж його частинками, 
окрім звичайних попарних зіткнень. Окрім того, вважатимемо, що взаємодія 
поміж молекулами є суттєвою лише на відстанях   у декілька характерних 
розмірів молекули d : d~ . На більших відстанях молекули практично не 

взаємодіють: 0u  (див. рисунок).  

Реальна енергія парної взаємодії поміж молекулами (рисунок) у нашому 
аналізі замінятиметься наближеною формулою: 
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   (2) 

 Статистичний інтеграл для реального 
газу.  

Статистичний інтеграл для реального газу, 
можна факторизувати аналогічно ідеальному 
газу, тобто зобразити у вигляді двох 
множників: інтеграла по імпульсам молекул 
та інтеграла по їх координатах: 

qp IIZ     (4) 

Перший з цих інтегралів нічим не 
відрізняється від такого самого інтегралу 
для ідеального газу, отриманого в лекції 

№16: 
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Другий, так званий конфігураційний, інтеграл має вигляд: 
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V dVdV
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u
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I    ...)exp(...)exp( 1
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   (6) 

де інтегрування по кожному з   nnnnn dzdydxdxdydzdV   ведеться по всьому 

об’єму газу V . Для ідеального газу 0u , тому інтеграл (2) дорівнює 

просто: N
V VI  . 

r  

 ru  

mr    

mu  
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Для його знаходження скористуємося парністю взаємодій поміж молекулами. 
Енергію взаємодії в такому разі можна представити у вигляді суми по всім 
можливим парам молекул: 

 
ji

ijji ruu
,

,    (7) 

Таких пар в газі повинно бути 
 

22

1 2NNN



. З урахуванням цього: 

)/exp()/exp( 0
,

0 TkuTku
ji

ij     (8) 

де добуток береться так само як і сума в (6) і містить приблизно 2/2N  
множників. Кожен з цих множників за умови  
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


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
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

ijij

ij

ru

r
   (9) 

де   - відстань взаємодії двох молекул (яка складає декілька характерних 
діаметрів однієї молекули) повинен наближатися до одиниці, через те що 
взаємодія на відстанях (7) є практично нульовою. Тому зручніше ввести 
функції: 

1)/exp( 0  Tkuf ijij    (10) 

які наближаються до нуля за умови (7) і відмінні від нуля лише за 
зворотної умови. 

В такому разі: 

...)...(1)1()/exp( ,11312
,

0   NN
ji

ij ffffTku    (11) 

Нехтуючи в (9) складовими, які містять парні, потрійні тощо добутки 
функцій ijf , які є малими порівняно з одиницею, маємо наближену рівність: 


ji

ijfTku
,

0 1)/exp(    (12) 

Оскільки всі молекули є тотожними, суму в (10) можна замінити добутком 
кількості молекулярних пар на значення функції ijf  для будь-якої пари 

молекул ji, : 

ijf
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Tku
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1)/exp(
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0     (13) 

Підставимо (11) в (4): 
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   (14) 

Розглянемо інтеграл jiij dVdVf , який фігурує  в (14). Підінтегральна 

функція є функцією лише відстані поміж парою молекул ji, : )( ij rr  ijij ff . 

Тому, якщо ввести нові координати з початком координат на одній з молекул 
(припустимо, i -молекули), то підінтегральна функція ijf  стане функцією 

координат лише другої молекули  jjf r0 , оскільки ми поклали 0ri  . В такому 
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разі по координатах першої молекули ( idV ) можна проінтегрувати, і таке 
інтегрування дасть знову об’єм газу: 

VdVfdVdVdVf jjijiij   0    (15) 

Де через   позначений інтеграл: 

 jjdVf0     (16) 

Нарешті вже можна записати конфігуративний інтеграл для реального газу у 
вигляді: 
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Звідки остаточний вираз для статистичної суми реального газу такий: 
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Де idealZ  - статистична сума ідеального газу. 

 Рівняння стану реального одноатомного газу 

За допомогою статистичного інтегралу (18) обчислимо тиск ідеального газу: 

NTNT V

Z
Tk

V

F
P

,
0

,

ln




















    (19) 

Підставляючи у (19) вираз (18), маємо: 


















 )

2
1ln(

ln 2

0 V

N

VV

Z
TkP ideal 

   (20) 

З огляду на малість величини 1
2

2


V

N 
 логарифм у (20) можна розкласти в 

ряд Маклорена, обмежившись першим складником ряду: 

V

N

V

N

2
1)

2
1ln(

22 
    (21) 

За такої умови вираз (20) для тиску отримує вигляд: 

2
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(

V
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V

TNk

V
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N
TkP

     (22) 

Порівняємо цей вираз з рівнянням Ван-дер-Ваальса: 

  TNkNbV
V

aN
P 02

2
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записаним у вигляді: 
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TbkN

V

TNk

V
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NbV

TNk
P 


   (24) 

Порівнюючи вирази (22) та (23) переконуємося в їх тотожності, якщо 
прийняти: 
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b
Tk

a


02


    (25) 

Отже, формула (22) презентує рівняння Ван-дер-Ваальса, теоретично 

виведене для невеликих густин (
V

N
-концентрацій) газу. При 0  рівняння 

стану реального  газу (22) переходить в рівняння стану для ідеального 
газу: 

V

TNk
Pideal

0    (26) 

 

Статистична фізика: лекція № 12 

Теорема про рівномірний розподіл енергії за ступенями вільності. Вивід 
теореми із канонічного розподілу.  

Застосування теореми в класичній теорії теплоємкостей. Результати 
класичної теорії теплоємкостей і порівняння їх з експериментальними 
даними. 
 

 Теорема про рівномірний розподіл енергії за ступенями вільності. 
Вивід теореми із канонічного розподілу. 

Зробимо припущення, що відповідним підбором системи координат повна 
кінетична енергія системи K  може бути представлена у вигляді: 





s

i i

i

m

p
K

1

2

2
   (1) 

Де індексом si ,...,2,1  нумеруються ступені вільності системи, причому: 

fNs  3    (2) 

N -кількість частинок в системі, f -кількість рівнянь зв’язку між 
незалежними координатами цих частинок. 

Теорема про рівномірний розподіл енергії за ступенями свободи стверджує, 
що «середня кінетична енергія, яка припадає на одну ступінь вільностсті є 
однаковою для всіх ступенів вільності і визначається лише температурою»: 

222
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2
Tk

m

p

i

i



   (4) 

Розлянемо повну енергію (гамільтоніан) системи: 

)(qKH     (5) 

Де  q  - залежна від всіх координат потенціальна енергія системи. З 
рівнянь теоретичної механіки Гамільтона, виникає, що: 

i
i

i

i

p

H
p

m

p





2

   (6) 

Отже, якщо буде доведено твердження: 
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



i
i p

H
p    (7) 

То тим самим доводиться також теорема (4). 

Покладемо 1i . Середнє значення від 11 / pHp   знаходимо за стандартною 
статистичною формою: 

 














q

ss

p

dqdqdpdpdpH
p

H
p

Zp

H
p ......)/exp(

1
121

1
1

1
1     (8) 

Візьмемо інтеграл по імпульсу 1p  по частинах: 
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Cкладова правої частини (9) обертається в нуль на обох межах: 

0)

)(

lim( 


p

pH

pe      (10) 

Через те, що експоненціальний множник зменшується значно швидше (як 

0)2/exp( 2  mp ), аніж зростає множник p . Тому в правій частині (9) 
залишається ненульовим лише другий інтеграл, який можна підставити у 
вираз (8), справедливий, очевидно, не тільки для 1i  для будь-якого i : 
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Як наслідок того, що з умови нормуваня імовірностей: 
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Отже, теорему (4) доведено. 

Звернемо увагу, що абсолютно аналогічним шляхом можна довести, що: 





i
i q

H
q    (13) 

Або більш загальні твердження: 

ij
j

i
j

i q

H
q

q

H
q 








   (14) 

Де ij -символ Кронекера: 









jif

jiif
ij ;1

;0
     

Таким чином, якщо потенціальна енергія системи є квадратичною формою від 
всіх координат: 
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  



s

ji
jiij qqcq

1,

   (15) 

Де ijc  -коефіцієнти, то теоерму рівного розподілу по ступеням вільності  

можна розповсюдити також на середню потенціальну енергію системи, а 
відтак і на повну енергію системи. 

Залежність потенціальної енергії системи типу (15) характерна для систем, 
які складаються з осциляторів. Причому кожна коливальна ступінь вільності 
осцилятора вноситиме удвічі більший внесок на кожну ступінь вільності:   

а не 
2


, оскільки осцилятор, на відміну від молекули ідеального газу, має 

як кінетичну, так і потенціальну енергію з однаковими середніми 
значеннями. 

 

 Застосування теореми в класичній теорії теплоємностей. Результати 
класичної теорії теплоємностей і їх порівняння з експериментальними 
даними. 

Почнемо з одноатомного ідеального газу, молекули якого мають по три 
ступені вільності ( )3i 14, які відповідають трьом незалежним координатам 

 321 ,, qqq  , необхідним для завдання положення молекули в просторі, і трьом 
незалежним поступальним рухам, які молекула може здійснювати, змінюючи 
одну з своїх координат. З теореми про рівний розподіл середньої 
кінетичної енергії по ступеням вільності негайно отримуємо середню 
кінетичну енерію молекули: 

2

3

2

3 0Tk
k 


   (16) 

Оскільки в ідеальнім газі молекули не мають потенціальної енергії, то 
середня кінетична енергія газу є одначасно його середньою повною 
енергією, тобто внутрішньою енергією: 

2

3 0TNk
kNU     (17) 

Якщо розглядати молекулу як сукупність декількох атомів з фіксованою 
відстанню поміж ними, то в такій «твердій» моделі молекули, крім трьох 

ступенів свободи, які пов’язані з поступальними 
рухами її центру мас, необхідно розглядати ще три 
ступені свободи, пов’язані з обертанням молекули 
навколо трьох можливих просторових осей. Отже, для 
багатоатомних молекул 6i . Виключенням з цього 
правила є двохатомна (або інша лінійна)молекула15, 
для якої можна вказати лише дві просторові осі, 
обертання навколо яких дає ненульову кінетичну 
енергію (обертання навколо осі, яка з’єднує атоми, 
очевидно не дає внеску в кінетичну енергію, бо 
момент інерції атомі відносно цієї осі є нульовий).  

                                                 
14 Зверніть увагу: символ  i  тепер означає щось зовсім інше, ніж у попередньому 
параграфі! 
15 Двохатомна молекула обов’язково лінійна, тобто така, в якій атоми розташовані 
уздовж однією лінії, та втім лінійними можуть бути і багатоатомні молекули (див. 
рисунок через сторінку) 

OHHC 52  
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Таким чином, маємо: 6,5,3i  відповідно для одноатомних, двохатомних (або 
лінійних) і багатоатомних (не лінійних) молекул. 

Тому у формули (15,16) необхідно внести деякі корективи, пов’язані з 
різною кількістю ступенів вільності молекул: 

TNk
i

U 02
   (18) 

Записуючи (17) для одного кіломоля ( ANN  ) і беручи похідну по 
температурі від внутрішньої енергії знаходимо вираз для теплоємності 
ідеального газу: 
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Теплоємність за умови сталого тиску знайдемо з рівняння Майєра: 
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Відношення теплоємностей, так званий коефіцієнт Пуассона: 

i

i

C

C

V

P 2
    (21) 

Наприклад для двохатомних газів цей коефіцієнт повинен бути близьким до 

40.1
5

7
 , для багатоатомних 33.1

6

8
  Таблиця дає порівняння теорії та 

експерименту для деяких двохатомних і багатоатомних газів. 

 

Гази 
2H  2N  2O  4CH  2SO  

KT ,  280 92 293 92 197 293 292  

exp  1.407 1.419 1.398 1.404 1.411 1.398 1.320 1.260 

theory  1.400 1.333 

 

Таблиця показує, що передбачення класичної теорії теплоємностей для 
реальних газів здійснюються лише наближено. Насамперед відношення 
теплоємностей  , отже і самі теплоємності, змінюються з температурою, що 
неможливо пояснити з точки зору виразів (19-21). Класичний ідеальний газ 
повинен мати незалежну від температури теплоємність. 

По-друге, з таблиці видно, що коефіцієнт Пуасона різних, наприклад 
двохатомних, газів не є суворо однаковим, як того вимагає класична теорія 
теплоємностей: відносна різниця поміж оксигеном та азотом, наприклад, при 
одній і тій самій температурі 92 К є більшою, ніж 1%, що на порядок 
перевищує точність експериментів (~0.1%). 

Справа полягає у тому, що для класичної теорії теплоємності застовано 
модель «твердих» молекул, в яких відстані поміж атомами є жорстко 
фіксованими. Таким чином з розгляду виключалися коливальні ступені 
вільності молекул. Розглянемо, наприклад двохатомну, або іншу лінійну 
молекулу: якщо її вважати «твердою» (отже вважати, що )5i , то 
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теплоємність кіломоля таких молекул при сталому об’ємі повнинна 

дорівнювати R
2

5
 (див. вираз (18)).  

Якшо ж ми розглядаємо зв’язок поміж атомами молекул як пружний, тобто 
допускаєм коливання (осциляції) атомів уздовж такого зв’язку, то 
кількість ступенів вільності зростає на одиницю і теплоємність отримує 
відповідний доданок.  

У випадку одноатомного газу, для того щоб отримати теплоємність 
2

3R
 

необхідно вважати атоми матеріальними точками. Допіру припустити, що 
атоми є як завгодно маленькими кульками, то негайно треба додавати до 
трьох поступальних ступенів вільності ще три обертальні, і теплоємність 
такого газу автоматично збільшується удвічі.  

Отож можна казати, що для вірного обліку теплоємності в межах класичній 
теорії, яка грунтується на теоремі про рівний розподіл кінетичної (а 
також потенціальної) енергій по ступеням вільності системи, необхідно 
мати абсолютно точне значення кількості ступенів вільності системи. 
Іншими словами потрібна абсолютно точна модель системи. Ця принципова 
проблема є труднощами саме класичної теорії: вона може бути усунена лише 
у межах квантової теорії теплоємкостей. 

 

Статистична фізика: лекція № 13 

Різні моделі поведінки частинок. Модель Максвелла-Больцмана.  

Тотожність частинок. Моделі Бозе-Ейнштейна і Фермі-Дірака. Вивід 
формул статистичних розподілів Фермі-Дірака і Бозе-Ейнштейна. із 
великого канонічного розподілу.  

Умови переходу до розподілу Гіббса (Максвелла-Больцмана), критерій 
виродження.  
 

 Різні моделі поведінки частинок. Модель Максвелла-Больцмана. 

Якщо температура ідеального газу не надто низька, то газ підкоряється 
класичному розподілу Максвела-Больцмана, який розглядався в лекції № 16. 
Зокрема для імовірності окремій молекулі мати компоненти імпульсу у 
певних межах, а також перебувати в елементі об’єму dxdydz був отриманий 
вираз: 
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   (1) 

Де ),,( zyxuu   - потенціальна енергія молекули у зовнішньому силовому 
полі. 

Квантова статистика відрізняється від класичної статистики у двох 
принципових моментах: 

 Існування дискретного спектру станів системи та дискретних станів у 
фазовому просторі; 
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 Послідовне врахування принципу тотожності для систем, які 
складаються з тотожних частинок; 

Дискретність станів досі враховувалась досить послідовно, а проблему 
тотожності частинок та її фізичні наслідки детальніше розглянемо в цій 
лекції. Розглянемо систему, яка складається з тотожних частинок з двох 
принципово різних позицій: з позиції класичної статистики, а також з 
позицій квантових уявлень.  

Нехай молекули в квантовому газі можуть знаходитися в індивідуальних 
квантових станах з енергіями  ,...,...,, 21 k . Для простоти припустимо, що ці 

стани є дискретними і тому нумеруються цілим індексом ,...2,1k .  

Молекули якось розподілені по можливих станах, тому в стані з енергією 

k  знаходиться kn  молекул із загальної кількості 


k

knN    (2) 

Причому повна енергія системи дорівнює: 


k

kknE     (3) 

Квантова механіка може лише вказати яка кількість частинок перебуває в 
тому, чи іншому стані, однак ніколи не може визначити, які саме частинки 
перебувають в певних станах, чи прослідкувати за зміною станів однієї 
частинки. Контролюється лише кількість частинок в групі kn , що перебуває 

у енергетичному  в стані з енергією k , іншими словами розміри, але не 
“склад групи”. 

З класичної ж точки зору виникає, що можна прослідкувати за кожною 
частинкою, тому що навіть тотожні частинки все ж розрізняються своїми 
траєкторіями. Знаючи початкові координати та імпульси всіх частинок 
системи, можна в принципі прослідкувати за рухом обраної (тобто якось 
поміченої, маркованої) частинки.  У кожний момент часу відомо, в якому 
саме стані вона знаходиться. Ніщо не заважає визначити те саме для кожної 
з тотожних частинок. Отже, класична статистика нібито може вказати не 
лише кількість частинок в групі kn , але також і “склад групи”.  

Тому для класичної статистики, наприклад, повинні розрізнятися поміж 
собою два такі стани, в першому з яких, припустимо, частинка j  

знаходиться в стані j , а частинка i  в стані i , і другий стан, який 

відрізняється від попереднього лише тим, що тепер частинка j  знаходиться 

в стані i , а частинка i  відповідно в стані j . Іншими словами, класична 

статистика розрізняє два стани, відмінні поміж собою лише перестановкою 
пари тотожних частинок. 

Зрозуміло, що така парна перестановка місцями двох тотожних частинок в 
системі ніяк не впливає на її фізичний стан, не лише на макрорівні, але 
навіть і на мікроскопічному рівні. Тому в класичній статистиці для того, 
щоб виключити з підрахунку такі нібито різні (а насправді абсолютно 
еквівалентні) мікроскопічні стани, доводиться ділити статистичну вагу 
макростанів на множник !N , який дає кількість парних перестановок в 
системі з N  частинок. Такою є ціна, яку доводиться платити в класичній 
статистиці за ілюзію щодо можливості розрізняти тотожні частинки за їх 
траєкторіями. 
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 Тотожність частинок. Моделі Бозе-Ейнштейна і Фермі-Дірака. 
Вивід формул статистичних розподілів Фермі-Дірака і Бозе-
Ейнштейна. із великого канонічного розподілу.  

 

В квантовій механіці з її більш послідовним підходом до проблеми 
тотожності частинок перестановочна еквівалентність станів врахована у 
квантовому принципі тотожності. Який стверджує, що “в системі тотожних 
частинок можливі лише такі системні квантові стани, які є або 
симетричними, або антисиметричними відносно перестановок будь якої пари 
частинок”.  

Принцип тотожності поділяє всі квантові частинки на два класи. Одним з 
цих двох класів є ферміони, які мають антисиметричні системні стани 
(тобто такі стани, хвильова функція яких змінює знак при кожній парній 
перестановці) та напівцілий відносно сталої Планка і ненульовий спін: 

,...
2

3
,

2

1
 Zs   (4) 

Іншим класом є так звані бозони, які мають симетричні системні функції та 
цілий відносно сталої Планка (можливо, що і нульовий) спін: 

,...2,,0  Zs    (5) 

Відносно ферміонів в квантовій механіці доводиться принцип заборони 
Паулі, який стверджує, що «в будь-якому квантовому стані може знаходитися 
не більше ніж один ферміон». Для бозонів ситуація інакша: в будь-якому 
квантовому стані може знаходитися як завгодно багато бозонів. 

Розглянемо систему тотожних квантвоих частинок, яка може обмінюватися з 
термостатом як частинками, так і енергією. У такому випадку ймовірність 
макростану системи з енергією n  та кількістю частинок n  задається 
великим канонічним розподілом Гіббса: 

 
 

  







 







,

)exp(,

)exp(,
,

n

n
n

n
n

n n
n

n
n

nw    (6) 

З огляду на те, що частинки є тотожними, маємо для енергії макростану: 

 nn     (7) 

Де n  кількість частинок в стані з енергією  . 
Отже, сумування по енергіях у виразі (6) фактично зводиться до сумування 
по частинках, тому замість подвійної суми (по енергіям та частинкам) 
фактично маємо одинарну. Крім того, байдуже, які саме n  частинок із 
загальної кількості в N  частинок, яку містять система та термостат 
разом, входять до системи. 

Важливо також, що будь-якому набору з n  частинок відповідає лише один 
мікростан, тому що перестановки тотожних частинок нових мікростанів не 
створюють. Отже, наслідком квантового принципу тотожності є твердження: 

    1,  nn n    (8) 

Звідси маємо суттєве спрощення виразу (6): 
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 

n

n

nnw

 













 















 









exp

exp

   (9) 

Згідно з визначенням середніх величин, середня величина кількості 
частинок в системі дорівнює: 

 









 





 



n

n
n

n

n

n
nnwn

)exp(

)exp(







 (10) 

Застосуємо наступне позначення: 

x


)exp(



(11) 

Тоді (10) можна переписати у  такому вигляді: 




 

















n

n
n

n

n

n

x

nx
xn ln


     (12) 

Формула (12) є однаково коректною як для 
ферміонів так і для бозонів. 

Розглянемо тепер конкретно ферміони. Для цих 
частинок діє принцип заборони Паулі: кожен 
квантовий стан (з енергією  ) може бути або 

вільний ( 0n ), або зайнятий ( 1n ). Отже, індекс n  в формулі (12) для 
ферміонів може приймати лише два дискретних значення:  1,0n . За таких 
умов маємо: 

  

   































1

1

11

/
)1ln(

;1

1

1

0

xx

x

x

x
xn

xxZ
n

n





   (13) 

Підставляючи в результат (13) вираз (11) отримуємо так званий розподіл 
Фермі-Дірака для ферміонів: 

1)exp(

1







F

n    (14) 

де Tk0  - енергетична температура. 

На рисункові наведений графічний вигляд розподілу Фермі-Дірака в 

координатах: 
F

nzyx  ,/,/   . 

Далі розглянемо бозони. Для цих частинок індекс n  у виразі (12) може 
приймати будь-які цілі значення:  ,...,2,1n (хоча насправді все ж таки не 

до , а лише до N , проте, це не дуже суттєво). З математичної точки 
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зору сума 
n

nx  є в такому разі просто геометричною прогресією і, як 

така, сходиться до виразу: 

   


































1

1

11

/
)1ln(

;
1

1

1

0

xx

x

x

x
xn

x
xZ

n

n





   (15) 

але виключно за умови, що: 

1x    (16) 

  Підставляючи (11) у (15) отримуємо розподіл Бозе-Ейнштейна у вигляді: 

1)exp(

1







B

n    (17) 

(при умові (16), що еквівалентно умові   ). 

 

 Умови переходу до розподілу Гіббса (Максвелла-Больцмана), критерій 
виродження  

Припустимо, що 

1)exp( 






x    (18) 

У такому разі в розподілах Фермі-Дірака 
(14) та Бозе-Ейнштейна (17) можна 
знехтувати у знаменниках одиницею 
порівняно з експонентою. Внаслідок 
такого спрощення обидва квантових 
розподіли переходять в один і той же 
класичний експоненціальний розподіл 
Максвела-Больцмана: 

)exp(

 

n    (19) 

На рисункові наведено порівняння двох 
розподілів: квантового розподілу Фермі-
Дірака (суцільна лінія) та класичного 
розподілу Максвела-Больцмана (точкова 
лінія). Як видно з рисунку більш-менш 
задовільний збіг кривих спостерігається 
за умови  2 . 

 
 




 
  



111 
 

Статистична фізика: лекція № 14 

Аналіз розподілу Фермі-Дірака. Рівень Фермі. 
Вільні електрони в металах як вироджений Фермі-газ. Характеристична 
температура. 
Фотонний газ. Рівноважне випромінювання як фотонний газ.  
Формула та розподіл Планка. Закон Віна. Закон Стефана-Больцмана.  
Поняття безе-конденсації при низьких температурах.  
 

 Аналіз розподілу Фермі-Дірака. Рівень Фермі.  

Розглянемо вираз для розподілу Фермі-Дірака. Він визначає середню 
кількість ферміонів на енергетичному рівні з енергією   при температурі 

T :  

1)exp(

1

0






Tk

n


    (1) 

Параметр розмірності енергії   має подвійну 
назву: з точки зору статистичної фізики це є 
хімічний потенціал системи ферміонів. Інша 
назва цього параметру для ферміонів - 
енергія Фермі. 

Середня кількість ферміонів на енергетичному 

рівні лежить у межах: 10  n . Тому число 

wn    можна розглядати також як імовірність заповнення відповідного 

енергетичного рівня. 

Припустимо, що 0T . Тоді показник експоненти в (1) прямує до  , 
залежно від того чи    ( тоді показник дорівнює  ), чи, навпаки, 

  (тоді  ). У першому випадку маємо:  









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






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








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)exp(

;

0

0
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0
0

T

T

T

n

Tk
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
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   (2) 

 

У другому, відповідно: 









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




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
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0)exp(

;
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T

T
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Tk
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



   (3) 

Таким чином, при 0T  для розподілу Фермі-Дірака маємо: 

0T  

0T  
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




















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if

if

if

n
T

;0

;
2

1

;1

0
   (4) 

при нульовій температурі розподіл вироджується у так звану сходинку 

Хевісайда, зображену на рисункові( де 
Tk

x
0


 ). У той же час при 0T  

розподіл виглядає, як більш, або менш (залежно від температури)  “розмита 
сходинка”. 

Рівнем Фермі називають енергію, яка відповідає умові: 

2

1
)( Fn     (5) 

З рівнянь (5) та (1) зрозуміло, що: 

 F    (6) 

Треба зауважити, що за умови дискретного енергетичного спектру системи, 
рівень Фермі (6) може й не співпадати з жодним з дозволених енергетичних 
рівнів системи. У такому разі рівень Фермі є лише умовною демаркаційною 
енергію, яка поділяє енергетичні рівні на такі, ймовірність заповнення 
яких більша (ті, для яких F   і 5.0w ), тобто швидше заповнені, аніж 

пусті, і такі, ймовірність заповнення яких менша ( F   і 5.0w ), тобто, 

швидше пусті, аніж заповнені. При 0T  рівень Фермі однозначно розділяє 
заповнені стани від пустих, як це видно з рисунку. 

Розподіл Фермі-Дірака нормується умовою: 












1)exp(

1
)(nN    (7) 

Де N - повна кількість частинок у квантовій системі, а сумування 
ведеться по всім можливим енергетичним рівням системи  . 
Енергія вільних ферміонів (як і бозонів) складається з енергії 
поступального руху, тому: 

m

ppp

m

p zyx

22

2222 
    (8) 

Треба брати до уваги, що при певному значенні імпульсу стан квантової 
частинки визначається також напрямом її спіну. Тому число квантових 
частинок в елементі об’єму фазового простору zyx dpdpdpdVd   

визначається множенням цього об’єму на кількість станів частинки зі 
спіном s : 

12  sls    (9) 

Де sl  - так званий множник Ланде, який приймає значення парні значення 
для ферміонів і непарні для бозонів, згідно до їх напівбілих, або цілих 

спінових чисел. Зокрема для електронів (
2

1
s ) цей множник дорівнює 2sl . 

Отже, кількість станів квантової частинки в елементі об’єму фазового 
простору дорівнює: 
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 
 

dV
dpdpdpl

d zyxs

32 
     (10) 

Якщо помножити (10) на імовірність заповнення 
кожного з цих станів (1), то отримаємо 
концентрацію частинок в елементі фазового 
об’єму: 

  



 




1)exp(2 3




zyxs dpdpdpl

dV

dN
dn   (11) 

Переходячи в сферичну систему координат  

 dddppdpdpdp zyx  sin2     (12) 

після інтегрування по сферичним кутам, отримуємо з (11,12): 

  



 




1)exp(2

4

3

2








dppl
dn s       (13) 

Або, з урахуванням (8): 

   
  



 




1)exp(2

22

3

2/12/3







dml
dn s    (14) 

 

 Вільні електрони в металі як вироджений Фермі-газ. характеристична 
температура 

Вільними в металах вважаються делокалізовані, не прив’язані до 
конкретного атому електрони, які можуть вільно пересуватися по кристалу. 
Кількість таких електронів в одиниці об’єму, що мають енергію в інтервалі  
від  до  d , можна знайти як добуток кількості квантових станів в 
цьому інтервалі (      dgd  ) на ймовірність заповнення кожного з цих 

станів  n . Отже, маємо: 

   
1)exp( 






 dg

dn    (15) 

де під  g  треба розуміти функцію густини станів для вільних електронів 
металу. 

З іншого боку, порівнюючи (15) з (14), і враховуючи, що 2sl , для 
функції густини станів вільних електронів отримуємо вираз: 

 
 

  



32

2/3

3

2/12/3

2

2

2

24
)(



mm
g     (16) 

який формально співпадає з виразом лекції № 10  для густини енергетичних 
станів ідеального газу вільних частинок, якщо під так званою ефективною 
масою m  розуміти масу вільного електрону в металі, а не у вакуумі: 

0mm  . 

2/3r  

2/1r  

  

r  
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Припустимо, що відлік енергії відбувається від мінімуму (дна) 
енергетичної зони, в якій розташовані вільні електрони: 0c . Тоді маємо: 

       







0

2/1

32

2/3

0 1)exp(2

2






 dm

dnn


   (17) 

Застосуємо у виразі (17) наступні позначення:  







 ;x   (18) 

У таких позначеннях , та з урахуванням виразу (17) можна отримати 
наступну формулу для концентрації вільних електронів: 

   



 


0

2/1

32

2/3

12

2



xe

dxxm
n


   (19) 

Якщо додатково позначити інтеграл, який фігурує в (1.7), ось так: 




 


0 1x

r

r e

dxx
 (20) 

то матимемо просту формулу для концентрації вільних електронів, як 
функції без розмірної енергії Фермі  : 

     

 2/132

2/3

2

2




m
n    (21) 

де інтеграли  r (20) мають назву інтегралів Фермі індексу r . На 
рисункові показані графічні залежності деяких інтегралів Фермі від 
безрозмірної енергії Фермі   для двох різних індексів. За межами 

інтервалу ]8,2[  інтеграли Фермі мають доволі точні наближені вирази 
(апроксимації) через елементарні формули, з одним з яких ознайомимося 
нижче. 

Скористуємося тим, що для вільних електронів у металах спостерігається 
сильне виродження, тобто виконується умова: 

1    (22) 

  (отже,  F ).  

За такої умови функція розподілу Фермі-Дірака 

1

1


 xe

n   (23) 

поводить себе майже так, як “сходинка Хевісайда” (4) ( на рисункові). 
Умова сильного виродження (22) може інтерпретуватися як умова низьких 
температур. Тоді для x   можна вважати, що функція (23) дорівнює 
одиниці, а для x  вона обертається в нуль разом з підінтегральною 
функцією в інтегралах Фермі.  

Значить інтеграли в (19-21) можна брати лише в межах від 0 до  , бо далі 
підінтегральна функція обертається в нуль. Отже, за умови сильного 
виродження (22) маємо: 

1

1

0 




 r
drx

r
r

r



   (24) 
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Застосовуючи цю формулу для випадку 
2

1
r , маємо для концентрації вільних 

електронів у металах вираз: 

    2/3
32

2/3
2/3

32

2/3

3

2

3

2
)( F

mm
n 








    (25) 

З (25) можна отримати і зворотну функцію  nF , тобто енергію Фермі як 
функцію концентрації вільних електронів: 

 
m

p

m

n F
F 22

3 23/222


 

   (26) 

де   3/123 npF  - так званий імпульс Фермі. 

Враховуючи (26), критерій сильного виродження  (22) можна переписати у 
вигляді: 

 
1

2

3

0

3/222


Tmk

n
   (27) 

звідки видно, що він добре виконується за умови низьких температур та 
високих концентрацій вільних електронів і тим краще, чим меншою є 
ефективна маса m  останніх. Критерій (27) можна переписати як умову на 
температуру: 

 
charT

mk

n
T 

0

3/222

2

3
   (28) 

У правій частині нерівності (28) визначається певна характеристична 
температура газу вільних електронів, залежна від їх концентрації та 
ефективної маси. Типовими значеннями характеристичних температур для 

металів є температури порядку K310  і вище, тому для звичайних температур 
критерій сильного виродження збувається для всіх металів і для деяких 
напівпровідників.  

Обчислимо внутрішню енергію вільних електронів просто як їх середню 
енергію. Згідно до визначення середньої енергії вона дорівнює просто: 

 







00 1)exp(





F

dg
dnU    (29) 

Користуючись тими ж позначеннями (18), що й в формулах (19-24) отримуємо 
з (29) наступний вираз: 

         





  2/332

2/52/3
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
 
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dxxm
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    (30) 

Інтеграли Фермі, що з’являються в (30), можна наближено знайти так само, 
як це було зроблено у вище, користуючись критерієм сильного виродження 
(22). Тоді матимемо з (30): 

  
    2/5

3
2

2/3
2/5

3
2

2/52/3

5

2

5
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mm
U 


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



    (31) 

Порівнюючи (31) з виразом для концентрації (25), неважко побачити, що: 
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  FF nU 
5

3
    (32) 

Оскільки ні концентрація n  (див. (25)) вільних електронів, ні енергія 
Фермі F  від температури не залежать, то і внутрішня енергія в цьому 
наближенні від температури також не залежить. Тоді і похідна від 
внутрішньої енергії по температурі (тобто теплоємність газу вільних 
електронів) повинна дорівнювати нулю в такому наближенні: 

  0










V

el
V T

U
C    (33) 

Проте, при більш акуратному обчисленні інтегралів Фермі, ніж це дозволяє 
наближена формула (24), певна слабка залежність від температури повинна 
з’являтися як для внутрішньої енергії так і для концентрації електронів. 
Зокрема: 

   
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
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



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Як видно з (34) доданок у квадратних дужках є мали порівняно з одиницею, 
в силу критерію виродження (22). 

Якщо взяти похідну по температурі від останнього виразу, то вона, по-
перше не є нульовою, а, по-друге, лінійно залежатиме від температури: 

  T
k

C
F
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V

2

0
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1













   (35) 

Проте навіть у цьому випадку внесок вільних електронів до теплоємності 
кристалів є значно меншим від внеску кристалічної гратки (фононної 
підсистеми кристалу. 

 
 Фотонний газ. Рівноважне випромінювання як фотонний газ.  

Важливим об’єктом застосування розподілу Бозе-Ейнштейна є електромагнітне 
випромінювання, якщо його розглядати як ідеальний фотонний16 газ. Як 
відомо, теплове випромінювання нагрітих тіл, або так зване чорне 
випромінювання, є єдино рівноважним типом випромінювання. Лише воно може 
перебувати у термодинамічній рівновазі з власним джерелом — нагрітим 
тілом.  

Механізм досягнення такої рівноваги є простим: це поглинання та емісія 
(випромінювання) фотонів нагрітим тілом. Кількість частинок (фотонів) N  
є змінною в часі, або іншими словами вона може флуктуювати. 
Розглядатимемо таке випромінювання як газ, що складається з  
квазічастинок (фотонів).  

Фотони не взаємодіють поміж собою, їх спіновий момент дорівнює нулю 
( 112,0  sls s ), отже, система фотонів є ідеальним бозе-газом. 

Розподіл Бозе-Ейнштейна для бозонів має вигляд: 

1)exp(

1









n    (1) 

                                                 
16 Назву «фотони» для квантів електромагнітного поля запропонував у 1923 році 
видатний англійський фізик Артур Комптон. 
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з обов’язковою умовою, що   . З цієї умови виникає, що хімічний 
потенціал   для бозонів має простий фізичний зміст: це найнижчий 
енергетичний рівень, на якому можуть перебувати бозони системи, або 
інакше кажучи, енергія основного стану системи бозонів. На рисункові 
показано декілька розподілів Бозе-Ейнштейна для різних температур, 
включно з нульовою. 

Якщо покласти хімічний потенціал бозонів рівним нулю 0 , (тому що 
зручно вести відлік енергії саме від найнижчого енергетичного рівня), то 
розподіл Бозе-Ейнштейна для фотонів можна переписати у простішому 
вигляді: 

1)exp(

1







n    (2) 

де   - пропорційна частоті енергія фотону. Імпульс фотону також 

пропорційний до частоти: 
c

p


 . Де c  - швидкість електромагнітної хвилі 

у вакуумі (швидкість світла). 

 

 Формула та розподіл Планка. Закон Віна. Закон Стефана-Больцмана.  

Знайдемо кількість можливих енергетичних станів для одного фотона  в 

елементі фазового об’єму pddVdpdpdpdVd zyx
3  Для квантових частинок, 

якими є фотони, маємо: 

 3
3

2
2


pddV

d


    (3) 

Множник 2 з’явився з урахування двох можливих напрямів поляризації, кожен 
з яких дає новий квантовий стан окремого фотону.  

Через те, що по об’єму ймовірність знаходження фотона розподілена 
рівномірно, інтегрування  по конфігуративному простору дає: 

 3
3

2
2


pd

Vd     (4) 

В імпульсному просторі стани розподілені 
нерівномірно, проте цей розподіл 
залежить лише від модуля імпульсу 
фотона, і не залежить від його напряму. 
Тому запишемо елемент об’єму імпульсного 
простору у сферичній системі координат: 

 dddpppd  sin23    (5) 

і проінтегруємо по сферичних кутах, що 
дасть множник 

 



2

00

4sin dd    (6) 

Нарешті ми можемо написати кількість можливих станів для фотона, 
підсумованих як  по тому об’єму, який займає бозе-газ, так і по всіх 
можливих напрямах розповсюдження фотонів в просторі. Маємо: 



n  

  

0123  TTT0T
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 3
2

2

8


 dpVp

d      (7) 

З урахуванням простого пропрційного зв’язку поміж 
імпульсом та частотою фотона, а також середньої 
кількості фотонів з частотою  , яка дається 
розподілом (2), отримуємо з (2) та (7), після 
перемноження, кількість фотонів, які мають частоти 
поміж    та  d : 



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 
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1)exp(32
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c
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dN     (8) 

Якщо помножити обидві сторони (8) на енергію фотона 
   , то отримаємо ту частину енергії, яку нагріте 

тіло випромінює у зазначеному вище інтервалі частот: 
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1)exp(
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32,
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dE         (9) 

Останній вираз отримав назву розподілу Планка, його уперше запропонував 
німецький професор теоретичної фізики Макс Планк.  

Перепишемо (9) у іншому вигляді, використовуючи безрозмірну змінну 



x  

та функцію спектральної густини енергії (або випромінювальну здатність): 
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Ця функція показує яка енергія випромінюється з 
одиниці поверхні абсолютно чорного тіла в 
одиницю часу та в інтервалі частот від  до 

 d . У підсумку матимемо з (9б10): 
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Графічний вигляд функції Планка )(xfP  показаний 
на рисункові. Зауважимо, що вона виглядає 
аналогічно функції розподілу Максвела і взагалі 
виглядаєє типовою диференціальною функцією 
розподілу ймовірностей. 

Знайдемо енергетичну світність тіла TR , інтегруючи його випромінювальну 
здатність по всіх частотах: 
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Залежність енергетичної світності від температури за ступеневим законом 

має назву закону Стефана-Больцмана, а множник при 4T  називається сталою 
Стефана-Больцмана. Отже, розподіл Планка, теоретично обґрунтовує 
експериментально встановлений закон (12), і обчислити значення константи 
Стефана-Больцмана.  

Макс Планк 
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Як видно з малюнку та з формули (11) розподіл Планка має максимум при 
певному значенні аргументу mx ,яке відповідає певній частоті: 
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Tkxm
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0    (13) 

Знайдемо значення mx  стандартнім методом: візьмемо похідну від функції 

)(xfP по її аргументу та дорівняємо цю похідну нулю: 
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Останнє рівняння неважко спростити до вигляду: 
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Рівняння (15) є трансцендентним, отже вирішити його можна або підбором 
коренів17, або графічним методом, побудувавши функції з лівої та правої 
частини рівняння, та прослідкувавши за точкою їх перетинання (рисунок).  

Приблизне значення потрібного нам кореня (15) дорівнює: 

823.2mx    (16) 

Звідси маємо, що частота, на якій випромінювальна здатність абсолютно 
чорного тіла сягає свого максимуму прямо пропорційна температурі: 

Tconstm    (17) 

Константу, яка фігурує в законі Віна (15) неважко облічити, 
використовуючи значення (16), знайдене нами вище: 


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Таким чином, розподіл Планка дозволяє пояснити також і експериментальний 
закон встановлений Віном і теоретично 
встановити константу у виразі(17).  

 

 Поняття безе-конденсації при низьких 
температурах. 

При низьких температурах розподіл Бозе-
Ейнштейна 

                                                 
17 З (15) негайно відшукується один з двох його коренів: 0x . Проте, рівняння 

(15) має ще один ненульовий корінь в інтервалі  0.375.2 x  . Дійсно при 

75.2x  ліва частина (15), яка на рисункові показана синьою лінією, більша від 

правої: 12
75.23

3
64.1575.2 


e . Тоді як при 3x , навпаки, права частина, яка 

прямує до безкінечності, переважує ліву частину рівняння (оскільки 68.203 e ). 

Отже у вказаному інтервалі існує таке значення mx  , при якому обидві частини 

урівнюються. 

 

mx
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наближається до односторонньої імпульсної дельта-функції Дірка. Дійсно 
при 0  показник експоненти в (19) прямує до безкінечності, отже 

0n  для всіх   .  

Лише для основного енергетичного рівня    показник експоненти не є 

безкінечним, отже і 0n . Таким чином, чим нижча є температура, тим 

більша частина бозонів переходить на основний, найнижчий енергетичний 
рівень.  

При наднизькій температурі всі бозони повинні  “конденсуватися”  лише в 
цьому стані, оскільки середня кількість бозонів у будь-якому іншому стає 
нульовою. Явище низькотемпературної “конденсації” в системі бозонів всіх 
(або переважної більшості) частинок в основному енергетичному стані 

0   отримало назву “бозе-конденсації”. А системи бозонів, більшість 
з яких перебувають в основному стані, відповідно називають бозе-
конденсатом. Явище бозе-конденсації притаманне виключно системам, які 
складаються з тотожних бозонів.  

Мікрофотографія демонструє поведінку двох газових хмарок, кожна з яких 
складаються або з бозонів, або з ферміонів, при трьох різних наднизьких 

температурах ( K777 104.2,101.5,101.8    відповідно). Добре помітно, що 
хмарка бозонів інтенсивно стискається (зокрема і під впливом бозе-
конденсації). У той час як ферміони зменшують свій об’єм значно 
повільніше, завдяки відомому принципу заборони Паулі.  

 

Статистична фізика: лекція № 15 

Поняття про флуктуації. Розрахунок флуктуацій за допомогою 
канонічного розподілу Гіббса.  
Флуктуації основних термодинамічних величин.  
Поняття про броунівський рух.  Розрахунок середнього квадрата 
зміщення броунівської частинки 
 

 Поняття про флуктуації. Розрахунок флуктуацій за допомогою 
канонічного розподілу Гіббса.  

В лекції №9 вже розглядалися поняття генеральної дисперсії та 
середньоквадратичної флуктуації фізичного параметру системи L : 
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Де кутові дужки позначають усереднення за тим, чи іншим статистичним 
розподілом, канонічним (при сталій температурі та кількості частинок), 
або великим канонічним (при сталій температурі). 

У випадку канонічного, або великого канонічного розподілів Гіббса 
знаходження флуктуації деякої фізичної величини фактично зводиться до 
знаходження її середньої величини і середньої величини її квадрату, як це 
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видно з формул (1). Втім, такий спосіб знаходження флуктуацій не завжди є 
найзручнішим з математичної точки зору.  

Існування флуктуацій параметрів системи виникає, таким чином, із законів 
статистичної фізики. Система, яка потерпає флуктуацію, може спонтанно 
(самовільно) перейти на певний час з більш імовірного до менш імовірного 
стану, що в принципі порушує «букву» другого закону термодинаміки. Втім, 
таке порушення є лише короткочасним, тоді як другий закон термодинаміки 
виконується тим точніше, чим довший час спостерігають за системою. 

Розглянемо деяку замкнену систему, яка  перебуває в стані рівноваги і має 
ентропію 0S . Припустимо тепер, що стан системи змінюється спонтанно і 

вона на певний час переходить у нерівноважний стан з ентропією 0SS  . 
Вважатимемо також, що зміна стану системи може бути описана зміною 
певного внутрішнього параметру   (наприклад густина газу, його 

концентрація, тощо), який змінюється від рівноважного значення:  0 . 

При цьому ентропія системи певним шляхом пов’язана з параметром  : 
 SS  . 

Імовірність того, що наша замкнена система потрапить в стан, який 
характеризується нерівноважним значенням внутрішнього параметру   
знаходимо за допомогою формули Больцмана: 
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Де константа визначається умовою нормування ймовірностей18. Величина 
00  SSS . Формула (2) коректна для замкненої системи зі сталою 

енергією. 

 

 Флуктуації основних термодинамічних величин.  

Втім, частіше доводиться мати справу з системою, яка є лише 
квазізамкненої, системою, яка складає лише порівняно малу частину великої 
замкненої системи. Таку систему розглядаємо як таку, що занурена у 
термостат зі сталою температурою 0T . Стан системи характеризуємо у такому 

випадку деяким зовнішнім параметром   , який при короткочасному переході 
з рівноважного до нерівноважного стану змінюється:  0 . Такий перехід 
можна розглядати як стимульований дією певного зовнішнього джерела 
роботи: зміна параметру 0   забезпечена роботою такого джерела 

 A . 

Запишемо тепер вираз для ймовірності переходу системи. Зміна ентропії 
системи «термостат+підсистема» дорівнює: 

0SSS     (3) 

Де 0, SS   - зміна ентропії підсистеми та термостату відповідно. Тоді 
ймовірність переходу системи в короткочасний нерівноважний стан 
(ймовірність флуктуації) є такою: 

                                                 
18 З умови 1)/exp( 0   dkSconstdw   маємо    1

0 )/exp(


   dkSconst  з 

інтегруванням по всім можливим значенням параметру  . 
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   d
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constdw )exp(

0
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    (4) 

З іншого боку зміна ентропії підсистеми з термодинамічних міркувань19 
дорівнює: 
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де 00 ,TP  - рівноважний тиск і температура термостату (і всієї системи); 

VU ,  - внутрішня енергія та об’єм підсистеми20. 

Далі для термостату маємо: 
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А з умов замкненості системи «термостат+підсистема» виникає: : 
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З рівнянь (3-7) можна дістатися виразу: 
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Отже, у найбільш загальному випадку мірою малих флуктуацій у 
макроскопічній системі служить елементарна робота, яку потрібно над нею 
здійснити для зміни на   зовнішнього параметру  , котрий характеризує 
стан системи. Що, проте, не означає, що флуктуації можливі лише за умови 
зовнішніх джерел та їх реальної роботи над системою. Робота  A  є лише 
віртуальною роботою, кількісною характеристикою флуктуації. 

Застосуємо вироблений підхід до розрахунків флуктуацій об’єму при сталій 
температурі системи та флуктуацій температури при сталому об’ємі.  

Робота ізотермічної ( VconstT  ;0 ) зміни об’єму V  дорівнює: 

  VPFVPSTUVA  000)(    (9) 

Де STUF 0  - вільна енергія, а VP 0  - робота термостата над 
підсистемою, яка відрізняється від роботи зовнішнього джерела (див. 
примітку 3 на попередній сторінці). За умови малої ізотермічної зміни 
об’єму V  зміну вільної енергії F  в правій частині (9) можна 

розкласти в ряд по ступеням V , враховуючи, що P
V

F

T










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19 Відповідно до основного термодинамічного рівняння, яким є вираз (5). 

20 З формули (5) видно, що  A  - робота зовнішнього джерела, тоді як робота 

термостату над підсистемою дорівнює VP 0 . 



123 
 

 

   
2

...
2

2

0

2

2

2

0

V

V

P
VPP

V

V

F
V

V

F
VPA

T

TT








































   (10) 

Позаяк процес є квазістатичним, тиск в підсистемі можна вважати рівним 
тиску в термостаті, тому перший чинник у правій частині (10) випадає як 
нульовий. В такому разі: 
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Підставляючи останній вираз у формулу (8) маємо: 
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Умовою стійкості речовини до флуктуацій є умова: 
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За якої константу в (12) знаходимо з умови нормування, яка дає відомий 
інтеграл Пуасона: 
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Де Vx  , і Tk
V

P
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 . З (14) отримуємо: 
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Отже, нормований розподіл (12) має наступний вигляд: 
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Знайдемо за допомогою розподілу (16)   2

0
2 VVV  :21 

                                                 
21 Інтеграл в (17) попри його громіздкий вигляд можна записати у вигляді: 





0

2
2

2

2 dxexJ x , який можна розглядати як похідну від інтеграла Пуасона 


  




0

0

2

dxeJ x  по параметру  , тобто: 



 2

10
2 





J

J . Звідси для (17) 

отримуємо :  
2
12 V . 
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   

T

T

T

V
P

Tk
dV

Tk

V

V

P
VV

Tk

V
P

V


















 





















 




0

0

2
2

0
0

2

2
exp)(

2
   (17) 

З формули (17) видно, що масштаби флуктуації зростають з підвищенням 
температури:  

 

TV

P

Tk
V











 02
   (18) 

Для ідеального газу (   2
0 // VTNkVP T  ) з (18) маємо для генеральної 

дисперсії об’єму: 

 
N

V

TNk

TkV
VDV

2

0

0
2

2     (19) 

Знайдемо далі флуктуацію густини 
V

m
  газу: 

   
V

Tk

V
P

V

Tk

V

m
V

V

m

V
m T

T

 0
2

2

0
2

2
2

4

22

22 1


























    (20) 

Де 
T

T P

V

V











1  - ізотермічний коефіцієнт стискання речовини. Відносна 

флуктуація густини газу дорівнює: 

V

Tk T

 0


   (21) 

Розглянемо тепер флуктуацію температури підсистеми в ізохоричних умовах 
( constV 0 ). Робота потрібна для переводу системи в нерівноважний стан 
дорівнює в цьому випадку: 

SUA  0    (22) 

Розкладаючи внутрішню енергію по ступеням малої зміни температури, маємо: 

 

     
22

2
22

0

0

2

2

2

S

S

TS

S

T
STT

ST
S

S

U
S

S

U
A

VV

VV






















































   (23) 

Однак,  

T
T

S
S

V











    (24) 

Комбінуючи (23,24) отримуємо: 
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   2
0

2

22
T

T

CT

T

S
A V

V














    (25) 

Імовірність флуктуації температури: 

 
dT

Tk

TC
constdw V )

2
exp(

2
00

2
    (26) 

З умови нормування можна знайти константу: 

2
002 Tk

C
const V


    (27) 

 І нормований вигляд розподілу (26): 

 
dT

Tk

TC

Tk

C
dw VV 







 


2
0

2

2
0 2

exp
2

   (28) 

З розподілу (28) виникає, що умовою стійкості 
системи є позитивність її ізохоричної 
теплоємності: 0VC . Користуючись (28) 
аналогічно розрахунку флуктуації об’єму можемо 

отримати генеральну дисперсію температури у вигляді: 

 
VC

Tk
T

2
02

2

1



   (29) 

З чого видно, що флуктуації температури зростають з температурою і тим 
більші, чим меншою є теплоємність. Зокрема для ідеального газу: 

 
iN

T

iNk

Tk
TDT

2

0

2
02 22

    (30) 

Як і для флуктуації об’єму, генеральна дисперсія обернено пропорційна 
кількості частинок в системі, і  для великих систем як відносна 
флуктуація об’єму, так і відносна флуктуація температури обернено 
пропорційні кореню квадратному з кількості частинок: 

;
12

;
1

NiT

T

NV

V






   (31) 

Формули (31) є віддзеркаленням надзвичайно загальної теореми статистичної 
фізики, за яким відносна флуктуація будь-якого фізичного параметру 
великої системи обернено пропорційна кількості частинок в системі: 

NL

L 1
~


   (32) 

 

 Поняття про броунівський рух.  Розрахунок середнього квадрата 
зміщення броунівської частинки 

Броунівським рухом називають хаотичний, неупорядкований та безупинний рух 
малих частинок, підважених у рідинах, або газах.  Вперше детально 
вивчався англійським ботаніком Р. Брауном (R. Brown), який  ще у 1827 
році спостерігав його, розглядаючи крізь мікроскоп рух квіткового пилку.  
Частинки пилку розмірами порядку одного мікрометру,  або й ще менше, 

 

t  

 X t  
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здійснюють незалежні одна від одної, невпорядковані рухи, які можна 
описати зигзагоподібними, складними, випадковими траєкторіями.  

Інтенсивність броунівського руху не залежить від часу, проте зростає при 
збільшенні температури середовища, в якому рухаються частинки. Як також і 
при зменшенні в’язкого тертя у цьому середовищу, або характерних розмірів 
броунівських частинок (a ). Причиною броунівського руху є тепловий рух 
молекул середовища і відсутність точної компенсації кількості зіткнень 
броунівської частинки з молекулами для протилежних напрямків. Інакше 
кажучи, флуктуації тиску молекул середовища на поверхню броунівської 
частинки спричиняють певну випадкову силу )(tX , яка діє на броунівську 

частинку у напрямку координатної осі Ox (а також кожної іншої осі). 
Залежність від часу такої випадкової сили показана на рисункові, з 
котрого видно, що її середня величина дорівнює нулю. 

Броунівський рух – найбільш наочне експериментальне підтвердження уявлень 
молекулярно-кінетичної теорії про хаотичний тепловий рух молекул 
середовища. Якщо проміжок часу спостереження ( t ) є достатньо великим для 
того, аби випадкова сила )(tX , діюча з боку середовища на броунівську 
частинку, багаторазово змінила свій напрям дії, то середній квадрат 

зміщення частинки уздовж певної осі (  2xu   пропорційний часу: 

Dtu 2    (33) 

Формула (33) має назву закону Ейнштейна, а коефіцієнт D - коефіцієнта 
дифузії.  

Припустимо, що на сферичну броунівську частинку у в’язкому середовищі 
діють лише випадкова сила )(tX  та сила в’язкого тертя, яка пропорційна до 
швидкості частинки. Припустимо також що ми розглядаємо лише зміщення 
частинки уздовж осі Ox . З огляду на еквівалентність координатних осей, 
та незалежність руху уздовж кожної осі, маємо для загального тривимірного 
зміщення такої частинки: 

    uxr 33 22     (34) 

У таких припущеннях з другого закону Ньютона матимемо наступне рівняння 
руху для окремої броунівської частинки: 

 tXxxm       (35) 

Для сферичної частинки коефіцієнт при швидкості у силі в’язкого тертя 
(перший чинник у правій частині (35)) дорівнює 

 a6    (36) 

де  - коефіцієнт в’язкого тертя середовища, a  - характерний розмір 
частинки. Формула (1.4) належить Стоксу і наводиться в лабораторному 
практикумі (сила в’язкого тертя Стокса).  

Інтегрувати рівняння (35) звичайним шляхом неможливо, хоча б тому, що 
точна залежність випадкової сили від часу невідома. Помножимо рівняння 
(35) з обох сторін на x2 : 

 txXxxxmx 222       (37) 

Далі введемо величину xu  , відносно якої запишемо очевидні твердження: 









xxxu

xxu





22

2
2

   (38) 
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З урахуванням (38) перепишемо (37) у вигляді: 

 txXuxmum 22 2       (39) 

Операція диференціювання по часу (яку ми позначаємо точкою згори) та 
операція усереднення (яку ми позначаємо кутовими дужками, або рискою 
згори) повинні комутувати поміж собою, тобто: 

uuuu   ;     (40). 

Також варто зауважити, що:  

  Tk
xm

xm 0

2
2 2

2
42 


    (41)                             

Нарешті, з огляду на незалежність величин x  та )(tX , також маємо, що 

    0 tXxtxX    (42) 

Усереднимо з урахуванням (40-42) ліву та праву частини рівняння (39), і 
отримаємо: 

Tkuum 02      (43) 

Позначимо fu  . Рівняння (43) можна переписати в такому вигляді: 

m

Tk
f

m
f 02


    (44) 

Рівняння (44) є неоднорідним диференційним рівнянням. З теорії таких 
рівнянь відомо, що його загальне рішення складається з суми двох функцій:  

21 fff     (45) 

причому функція 1f  є загальним рішенням відповідного однорідного 
рівняння, тобто: 

011  f
m

f
     (46) 

Тоді як функція 2f  є окремим (частковим) рішенням рівняння (44). Таке 
рішення легко підібрати: дійсно,  рівнянню (44), зокрема, відповідає така 
функція: 


Tk

f 0
2

2
    (47) 

Рівняння (46) є рівнянням першого порядку і досить легко інтегрується: 

  )exp()
2

exp()( 111 
 t

C
m

t
Ctf     (48) 

де через 



2

m
  позначено характерний час релаксації броунівської 

частинки, а через 1C - константу інтегрування. 

Остаточно маємо для допоміжної функції f : 


Tkt

Ctf 0
1

2
)exp()(     (49) 
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Інтегруючи функцію (49) по часу ще раз, отримаємо : 


 Ttk

C
t

Ctu 0
21

2
)exp()(     (50) 

Перш за все пригадаємо, що час спостереження за системою ми вважали 
великим: отже t . Тому перший фактор в правій частині (50) можна 
відкинути у порівнянні з іншими, як експоненціально малий. Константу 
інтегрування визначимо з початкової умови: 

0)0( 2 Cu    (51). 

Отже, остаточно маємо за умови (51) що: 

   Dt
Ttk

tu 2
2 0 


   (52) 

ми отримали закон Ейнштейна (33), де 

 a

TkTk
D

3

2 00     (53) 

- коефіцієнт дифузії броунівської частинки. 

Для тривимірного зміщення згідно з (34) матимемо:  
a

Tk
r 02     (54). 

Середній квадрат зміщення прямо пропорційний температурі та часу, і 
обернено пропорційний розмірам частинки та в’язкості середовища. Всі ці 
залежності були перевірені експериментально Ж. Переном та Т. Сведбергом. 
Саме з формули (54) експериментально було отримане значення сталої 
Больцмана 0k .  
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