For the problem of the best uniform approximation of a continuous map with compact convex images by sets of other continuous maps with compact convex images, we establish necessary and sufficient conditions and the criterion for an extremal element, which is a generalization of the classical Kolmogorov criterion for the polynomial of best approximation.
Для задачи наилучшей равномерной аппроксимации непрерывного отображения с компактными выпуклыми образами множествами других непрерывных отображений с компактными выпуклыми образами установлены необходимые, достаточные условия и критерий экстремального элемента, который является обобщением классического критерия Колмогорова многочлена наилучшего приближения.